
POINT SPREAD FUNCTION ESTIMATION MODELING AND

NON-BLIND DECONVOLUTION OF PHOTOS WITH

SPATIALLY-VARIANT MOTION BLUR THROUGH INERTIAL

SENSOR DATA

THESIS

Submitted to fulfill one of the requirements

for a Sarjana Komputer degree

from the Informatics Study Program

Compiled by:

Ghazali Ahlam Jazali

Student Identification Number: 215314191

FACULTY OF SCIENCE AND TECHNOLOGY

SANATA DHARMA UNIVERSITY

YOGYAKARTA

2025

PEMODELAN ESTIMASI POINT SPREAD FUNCTION DAN

NON-BLIND DECONVOLUTION CITRA DENGAN BURAM

GERAKAN YANG BERVARIASI SECARA SPASIAL

BERDASARKAN DATA SENSOR GERAK

SKRIPSI

Diajukan untuk memenuhi salah satu syarat

memperoleh gelar Sarjana Komputer

Program Studi Informatika

Disusun oleh:

Ghazali Ahlam Jazali

NIM: 215314191

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS SANATA DHARMA

YOGYAKARTA

2025

i

ii

STATEMENT OF AUTHENTICITY

I declare that this thesis does not contain the work or parts of the work of others, except

those that have been mentioned in quotations and bibliography by following the provisions

as befits scientific work.

If in the future there are indications of plagiarism in this manuscript, I am willing to bear

all sanctions in accordance with applicable laws and regulations.

Yogyakarta, 19 December 2024

Writer,

Ghazali Ahlam Jazali

iii

STATEMENT OF APPROVAL FOR PUBLICATION OF SCIENTIFIC

WORK FOR ACADEMIC PURPOSES

The undersigned, a student of Sanata Dharma University:

Name : Ghazali Ahlam Jazali

Student Identification Number : 215314191

For the development of science, I give to the Sanata Dharma University Library my scientific

work entitled:

“Point Spread Function Estimation Modeling and Non-Blind Deconvolution of Photos

with Spatially-Variant Motion Blur through Inertial Sensor Data”

along with the necessary equipment (if any). I hereby grant the Sanata Dharma Univer-

sity Library the right to store, transfer in the form of other media, process in the form of

databases, distribute in a limited manner, and publish it on the internet or other media for

academic purposes without the need to ask permission from me or give royalties to me as

long as I keep my name as the author.

Thus I make this statement truthfully.

Written in Yogyakarta

on the date: 24 January 2025

Writer,

Ghazali Ahlam Jazali

iv

CONTENTS

Approval Page i

Ratification Page ii

Statement of Authenticity iii

Statement of Approval for Publication of Scientific Work for Academic Purposes iv

Table of Contents v

List of Figures viii

Listing x

List of Abbreviations xi

Preface xii

Abstract xiii

Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 2

1.3 Research Objectives . 3

1.4 Research Benefits . 4

1.5 Scope and Limitations . 4

1.6 Writing Systematics . 5

Literature Review 7

2.1 Previous Research . 7

2.1.1 Using Multiple Cameras . 7

2.1.2 Using Inertial Sensor Data and ConvNets 8

2.1.3 Using Inertial Sensor Data for Non-Blind Deconvolution 9

v

2.2 Theoretical Framework . 10

2.2.1 Convolution . 10

2.2.2 Deconvolution . 12

2.2.3 Camera Movement and Spatial Variance 15

2.2.4 Inertial Sensors Data . 16

2.2.5 Homography . 17

2.2.6 Spline Interpolation . 19

2.2.7 Structural Similarity Index (SSIM) for Image Similarity Measurement 19

Methodology 21

3.1 Tools and Resources . 21

3.2 General Overview . 21

3.3 Implementation . 22

3.3.1 Processing Raw Inertial Sensor Data 22

3.3.2 Generating Point Spread Functions 23

3.3.3 Non-Blind Deconvolution . 30

3.4 Testing Scenario . 31

Results and Discussion 32

4.1 Methodology Implementation . 32

4.1.1 Inertial Sensor Data Collection . 32

4.1.2 Applying Homography to Estimate Point Movement 35

4.1.3 Generating Cartesian-Represented Point Spread Functions 37

4.1.4 Converting Cartesian-Represented Point Spread Functions into their

Matrix Representations . 42

4.1.5 Realistic Modeling of Motion-Blurred Images 45

4.1.6 Removing Motion Blur from Images 47

4.2 Results . 50

4.2.1 PSF Model Accuracy . 50

4.2.2 Deblurring Results with Increasingly Noisy PSF 51

vi

4.2.3 Deconvolution Results with Spatially-Variant PSFs 54

4.3 Discussion . 55

Conclusion and Recommendations 57

5.1 Conclusion . 57

5.2 Recommendations . 57

References 59

vii

LIST OF FIGURES

1 Effects of convolution with a 15×15 Gaussian and linear (top right to bottom

left) motion blur kernels (PSF). 12

2 PSF field produced by translational movements on the x, y, and z axes. . . . 15

3 PSF field produced by rotational movements on the x, y, and z axes. 15

4 Rotational movement, the velocity of which is captured by the gyroscope. . 16

5 Translational movement, the acceleration of which is captured by the ac-

celerometer. 16

6 A diagram showing the basic outline of the proposed software pipeline. . . 28

7 A visualization of how Algorithm 2 works. 30

8 Gyroscope data spline and its first-order antiderivative. 34

9 Linear accelerometer data spline and its second-order antiderivative. 34

10 Cartesian-Represented PSF plotted in 3-dimensional space, with z axis as time. 41

11 Cartesian-Represented PSF plotted in 2-dimensional space, omitting the z. . 41

12 Discrete PSF plotted as an image, where black means zero values. 45

13 Convolving an image and deconvolving it with its true PSF (example 1). . . 48

14 Convolving an image and deconvolving it with a noisy estimate PSF (exam-

ple 1). 49

15 Convolving an image and deconvolving it with its true PSF (example 2). . . 49

16 Convolving an image and deconvolving it with a noisy estimate PSF (exam-

ple 2). 50

17 Sample 1 illustrating the similarity between model PSFs and “real” PSFs. . 50

18 Sample 2 illustrating the similarity between model PSFs and “real” PSFs. . 51

19 Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.01 seconds. 52

20 Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.025 seconds. 52

viii

21 Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.05 seconds. 53

22 Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.075 seconds. 53

23 Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.5 seconds. 54

24 The original image before a spatially-variant motion blur degradation. . . . 54

25 The spatially-variant motion-blurred image. 54

26 The result of the spatially-variant deconvolution. 55

ix

LISTINGS

1 Using the scipy.interpolate.UnivariateSpline class 32

2 Obtaining the first-order antiderivative of the gyroscope data 33

3 Obtaining the second-order antiderivative of the accelerometer data 33

4 Function to extract a translation vector given t (relative from t0) 35

5 Function to evaluate UnivariateSpline objects at t 35

6 Function to construct the rotation matrix 35

7 Function to combine the computed rotation matrix and translation vector to

generate a homography matrix . 36

8 An Interval helper class to represent an interval cut from the inertial sensor

data . 37

9 Function to generate the continuous PSF 38

10 An example usage of the generate_psf() function 40

11 Python implementation of Algorithm 2 . 42

12 Function to apply Algorithm 2 to continuous PSFs 43

13 Convolving an RGB image against a PSF 46

14 Adding additive Gaussian noise to the motion-blurred image 46

15 Using the unsupervised version of the Wiener-Hunt deconvolution algorithm 47

x

LIST OF ABBREVIATIONS

PSF : Point Spread Function; synonymous with “kernel”.

ConvNets : Convolutional Neural Networks

ISO : International Organization for Standardization; in photogra-

phy, the term refers to the (tunable) sensitivity of a camera’s

image sensor to light.

xi

PREFACE

For a long time, I have always found the problem of non-blind image deblurring—which

is the topic of this research—as something interesting. However, it was not until I studied

as an undergraduate exchange student at the University of Pennsylvania that the research

presented in this thesis first came into being. It started as a topic that I came up with for

the final project of CIS 5810: Computer Vision & Computational Photography. Because of

that, I would like to extend my gratitude to Professor Jianbo Shi for encouraging me to dive

into this subdiscipline of computer vision and for providing me with guidance. Although

challenging, I enjoyed every minute of the studying that culminated in this thesis.

I also would like to express my gratitude toward my thesis advisor, Drs. Hari Suparwito,

S.J., M.App.I.T. This thesis would not be what it is today were it not for the advice and

instructions he provided. Moreover, the help provided by Dr. Sri Hartati Wijono S.Si.,

M.Kom as well as Dr. Ir. Ridowati Gunawan, S.Kom., M.T. during the proposal-stage of this

research was highly invaluable to its development.

Finally, I would like to acknowledge the unwavering support of my family and friends,

whose encouragement and belief in my abilities have kept me motivated throughout this

journey.

I sincerely hope that the work presented in this thesis will add to the growing body of

knowledge in the field of computer vision and push for more research in non-blind image

deblurring.

Yogyakarta, 19 December 2024

Writer,

Ghazali Ahlam Jazali

xii

Abstract

Despite the growth in image sensor technology, key limitations remain. Modern image

sensors in smartphones, due to their smaller size—relative to their DSLR counterparts—

often have to balance between ISO value and shutter speed. When the value of the for-

mer is raised, the sensor will allow more light in but the resulting photos will gain noise

due to the increased sensitivity. When the latter is lowered, more light can be gained

without trading it off with noise; although, motion blur will be easier to unintentionally

introduce to the image. This research offers a way to take photographs without having

to painstakingly optimize for the least amount of noise and motion blur. By initially

allowing motion blur to be present, the camera sensor can then be set towards lowering

its ISO value to suppress noise. The motion blur in the resulting image can then be

removed through non-blind deconvolution based on a known (estimated) kernel. The

kernel (or PSF) that is used for the deconvolution process is obtained through a mod-

eling technique that utilizes data from inertial sensors. To conduct the modeling, this

research presents a new algorithm to generate spatially-variant PSFs given the appropri-

ate inertial sensors data. The algorithm fits into an end-to-end image deblurring pipeline.

Additionally, unlike most computer vision literature dealing with motion blur removal,

this research provides a comprehensive but concise guide on the implementation of the

said PSF modeling technique.

Keywords. Non-blind deconvolution, motion blur, computer vision, computational photography, ISO,

shutter speed

xiii

CHAPTER I

INTRODUCTION

1.1 Background

Over the course of decades, the quality of phone cameras have improved dramatically. How-

ever, because they are limited by their relatively smaller sensor size—compared to DSLR

cameras—the quality of the images produced by them degrades once the shooting condi-

tion is less-than-ideal [1]. In low-light environments, phone cameras will attempt to balance

between the shutter speed (lowered) and the sensor’s ISO value1 (raised) in order to com-

pensate for lack of sufficient lighting. Letting the shutter open for a longer period of time

will allow for more light enter. The main trade-off to this, however, is the increased likeli-

hood of motion blur being introduced to the final image; since it is highly probable that the

photographer moved during the time window where the sensor is exposed to light2. Multiple

research have attempted to address this problem, mainly by defining a system where mo-

tion blurs can initially be tolerated—with the premise that it would be removed later during

post-processing.

A classic example of such research, [2], described the use of a secondary camera to work

in tandem with a primary camera. The secondary camera captures video starting from the ex-

act moment the primary camera starts capturing image—up to the point when it stops doing

so. The frames of the video effectively captures the magnitude and direction of the primary

camera’s sensor displacement during image capturing. According to its testing results, this

approach yields a high degree of accuracy given some conditions. However, it operates un-

der the assumption that the motion blur in an image as a whole is spatially-invariant, i.e., can

be described by a single point spread function. Realistically, however, the cause of motion

blurs is a combination of translation and rotation of the sensor in three-dimensional space.

This means that a degree of spatial variance will ultimately be present.

1The ISO value indicates how sensitive the camera sensor is to light. A sensor set to a higher ISO value will

generate more luminance and color noise on the image it takes.
2In addition to the photographer’s movement during shutter exposure, motion blur may also be caused by

the movement of the subject.

1

Another way to gain knowledge on the spatial displacement of the sensor during the time

when it was exposed to light can be done through the recording device’s inertial sensor. The

one type of standard inertial sensor that is embedded in most modern smartphones is the

gyroscope. Gyroscopes have the capability to detect angular velocity. Through the use of

integration, the gyroscope can effectively give readings on the camera sensor’s rotational

movement on three-dimensional space—that is, all x, y, and z axes. One approach that took

advantage of inertial sensor measurements is [3]: by using a convolutional neural network.

Through the implementation of an encoder-decoder architecture, the authors of the paper

demonstrated the viability of their model in eliminating a high degree of motion blur. How-

ever, due to the nature of convolutional neural networks, artistic types of blurs that may be

desirable to retain (e.g., shallow depth-of-field), may be falsely considered as motion blur

and subsequently deblurred. In addition to that, the motion blur model that was used had to

be simplified into a linear approximation so that it can be concatenated to the back of the im-

age tensor as two matrix representation of the model (“blur fields” in the x and y directions).

Moreover, the method by [3] is unable to detect translational movement due to the lack of

accelerometer data—although, it has been noted throughout deconvolution literature that the

effect of translational displacement on motion blur is limited for certain situations (and adds

unnecessary complexity to the motion blur model).

This research aims to create a non-blind image deconvolution pipeline that considers

both the motion blur spatial variance from translation and rotation. The pipeline consists

of two main sections: point spread function (PSF) estimation and non-blind deconvolution.

Additionally, as an integral part of the pipeline, this research presents a new algorithm that

is capable of producing realistic PSFs through inertial sensor data.

1.2 Problem Formulation

This research attempts to tackle the problem of motion deblurring by proposing a photo

processing software pipeline. The pipeline takes an image degraded by natural motion blur

along with the motion data of the device during the time the photograph was taken. Inside

2

the pipeline, a realistic model of the motion blur is inferenced using the provided inertial

sensor data to produce a PSF matrix; which in the image degradation model detailed in Eq.

2, substitutes the kernel k. Motion blur is then removed from the image through non-blind

deconvolution, which takes in a blurry image and an estimation of its corresponding PSF.

The output of the pipeline is the latent image.

As it is computationally-efficient, the pipeline will be able to run on mobile devices. The

pipeline also allow users to capture even higher quality images than what their camera nor-

mally allows. This is because users will no longer be constrained to shorter shutter speeds; a

longer shutter speed will allow more light to be captured by the sensor, hence details within

the image—which would otherwise be lost to noise due to high ISO—will show up more

pronounced. Although non-blind deconvolution tend to leave artifacts—the degree of which

depends on the PSF estimation quality—degradation from them tend to not obscure fine de-

tails as much as image noise (and motion blur) do. This research trades-off noise degradation

in favor of deconvolution artifacts because of its tendency.

1.3 Research Objectives

The goal of this research is summarized by the following:

1. To create an end-to-end image motion deblurring pipeline, as described in the problem

formulation;

2. to describe a novel algorithm that converts inertial sensor data to PSFs;

3. to provide a comprehensive reference for obtaining realistic PSF models through the

use of inertial sensor data to the computer vision literature;

4. to provide quantitative measurements and qualitative comments of the quality of im-

ages deblurred through non-blind deconvolution and the quality’s relationships to other

parameters, such as the attributes of the PSF.

3

1.4 Research Benefits

An extensive number of research have been written on image deblurring—ranging from the

direct use of non-blind deconvolution algorithms to approaches such as ConvNets. However,

to date, there has not been a comprehensive and concise reference, gathered under a single

paper, on the use of inertial sensor data to model PSFs along with the implementation of the

modeling. This research contributes to the deconvolution literature by providing a framework

to convert inertial sensor data into realistic discrete PSFs.

In addition to providing benefits for public use (i.e., for smartphone photography), under

the assumption that its use grows popular enough, the pipeline could potentially set stan-

dards for photograph metadata. If the pipeline is made easily accessible for any developers

to implement into their products, camera manufacturers will be more inclined to include

inertial sensor data accompanied by accurate timestamps (down to nanoseconds) as part of

their device’s default photograph metadata. The adoption of such standard would mean that

most photographs taken will be accompanied by inertial sensor data. This means that if any

of those photographs turned out to be affected by motion blur, their clear version can be

retrieved regardless of the device used to capture them. This can be beneficial for the field

of computer vision. For instance, in training a ConvNets for image recognition, blurry pho-

tographs in the datasets that would have otherwise been discarded during the preprocessing

stage can be kept and deblurred.

1.5 Scope and Limitations

Any motion blur that was not caused by the capturing camera sensor motion might negatively

affect the result of the image deblurring. For instance, if a car was passing through when an

input photograph was taken, the non-blind deconvolution algorithm applied on the image

might refine the initial estimation kernel based on motion blur that was produced by the

passing car instead of the motion blur caused by the camera’s movement. Because of that,

it is likely that the photo processing pipeline will perform worse on photos where objects

moves independently, especially if the objects’ movements are not parallel to the movement

4

of the camera sensor.

In addition, another one of the pipeline’s point of failure is the accuracy of readings from

the hardware involved (to a degree, this excludes the reading accuracy of the inertial sensor

data). For instance, the camera that captures the image needs to be calibrated with respect

to its focal length, optical center, and skew coefficient [4]. With a faulty calibration, the set

of point spread functions inferred from the inertial sensors may not match the actual motion

blur present in the image.

Due to the reasons iterated above, the pipeline operates under the following assumptions:

1. Objects within the captured images are stationary; the motion blur within the images

are purely caused by the sensor’s movement.

2. The calibration variables (e.g., the camera matrix, etc.) for the necessary hardware

components that the software pipeline operates on are accurately known.

1.6 Writing Systematics

This research proposal has been written in a way that assumes the reader’s basic knowledge

of computer vision techniques and familiarity to basic terminologies. However, more obscure

topics such as deconvolution will be preceded by short introductions.

Chapter 1 includes some background knowledge to give a motivation on the need to

solve motion deblurring—an ill-posed inverse problem in computer vision. It also gives

the problem formulation to define the questions that the research is aiming to answer. The

objectives and benefits of the research is later outlined to give a view on the final products

of the research and their expected impacts on its target disciplines respectively. This chapter

defines the scope and limitations of the research to set some boundaries on what it will and

will not explore.

Chapter 2 contains a review on approaches commonly used to address the problem of

image deblurring, as well as methods that are less common but are noteworthy. This chapter

also includes a theoretical framework that are critical to understanding the motion deblurring

technique presented by this reasearch.

5

Chapter 3 outlines the tools and resources that this research intends to use to construct the

product. It also gives a general overview on how the research is to be carried out, as well as

details on its implementation and testing scenario. Chapter 4 Discusses the the methodology

implementation as well as its result, and Chapter 5 concludes the research.

6

CHAPTER II

LITERATURE REVIEW

2.1 Previous Research

Motion deblurring is an ill-posed problem. Over the past couple of years, great advances

have been made in an attempt to resolve it, by attempting to find ways to constrain the

solution space presented by this problem.

2.1.1 Using Multiple Cameras

A method of adding a secondary, high–temporal resolution camera to capture video that can

be decoded into motion data was proposed by [2]. To ensure that the video from this camera

can accurately represent the spatial displacement of the sensor in the primary camera, three

of prototypes were proposed—each of which has their own disadvantages. Prototype (a)

places the secondary camera next to the primary one—where each camera are independent

of each other, in a sense that they have their own lenses and sensors. There are a number

of problems with prototype (a), namely the fact that the images produced by the two has to

be identical in all aspects other than resolution, color channels, and noise. This condition is

particularly difficult to satisfy, given the different focal length and size of both the lenses and

the sensors. Prototype (b) improves upon these issues by using only one lens but still with

two separate lenses. Using a beam splitter, the images produced by the sensor can have an

identical perspective because they came from the same lens. Prototype (c) takes this further

by combining the two devices into a system of one lens and a binned CMOS sensor.

The motion data provided by the secondary camera can then be converted into a point

spread function (PSF) that describes the motion blur applied to the latent image. In order

to do so, each frame of the video is treated as discrete samples of the sensor’s displacement

over the period of time when it was exposed to light. That set of discrete samples can be

made into a continuous PSF through the use of spline interpolation. Once the PSF is found,

a non-blind deconvolution operation can be applied in order to extract the latent image. In

7

this particular case, the iterative Richardson-Lucy algorithm is used due to its convenient

property of never producing negative value outputs, which, according to the authors, “make

better physical sense than linear methods.”

This accuracy of this method is in the subpixels level, given that the secondary camera

has a high enough sensor resolution and a low enough luminance noise standard deviation.

However, due to the assumption that a single PSF can describe the motion blur of the whole

image, this method does not address the possibility of a spatially-variant motion blur within

the image—where each object within the picture may exhibit a different PSF.

2.1.2 Using Inertial Sensor Data and ConvNets

On the other hand, [3] utilized a encoder-decoder–structured convolutional neural network

trained using a set of 100,000 (1) degraded images, (2) their motion data obtained from

the capturing device’s gyroscope, and (3) ground truth images that describes how the latent

images should look like. In order for the motion data to be fed to the ConvNets, they first

need to be converted into a form that can be concatenated with the image tensor. The authors

do this by converting the angular displacement on all x, y, and z axes from the gyroscope

data into what they refer to as “blur fields” (B). The blur field consists of two 2-dimensional

matrices that are of the same H × W size as the motion-blurred image (excluding color

channels). The each element in the Bx and By blur fields are the value of the blur vector in

the x and y axes; hence B as a whole represent the PSFs at every pixel of the image. These

PSFs are assumed to be linear in nature in order to represent each of them as a vector of two

elements [x, y].

As indicated by the description of blur fields generation above, [3]’s method does not

directly deal with PSFs, and the non-blind deconvolution operations are done within the

decoder part of the ConvNets. This approach simplifies the pipeline of image deblurring,

albeit with a number of trade-offs, including the granularity of control in crafting the pipeline

itself.

The nature of the blur fields generation described in the paper only takes into account

the spatial variance of the motion blur with respect to the motion data provided by the

8

gyroscope—it does not directly consider the distance of objects within the images relative

to the camera sensor. Which means that, during training, while object distances may be

picked up by the convolutional layers as features, and their relationships with the provided

blur fields may be determined by other parts of the hidden layers—how well the resulting

model performs depends almost solely on the quality of the training dataset and how well

it represents real-world conditions. With a two-step process such as with [2], certain pre-

processing operations can be applied on—for instance—converting discrete motion samples

into a continuous PSF if it was found that it did not perform well enough when deconvolved

against degraded images. In addition, there is no way guarantee that the model deconvolves

motion blurs only. As stated by [5], the network’s training may not be sufficient to enable

the resulting model to distinguish between degradative and intentional (e.g., shallow depth

of field) blurs every time.

2.1.3 Using Inertial Sensor Data for Non-Blind Deconvolution

Instead of letting a ConvNets to conduct the deconvolution—a class of solution called blind

deconvolution—[6] proposed a two-step method to motion deblurring. This is done by first

estimating the motion blur kernel associated with the input image. If a blur kernel is known,

then the problem—the restoration of the latent image—becomes solvable through non-blind

deconvolution. The authors employed a non-blind deconvolution method described by [7],

which is an improved version of the Richardson-Lucy non-blind deconvolution algorithm

that prevents ringing artifacts that are especially prevalent in deconvolved low-light photos

featuring clipped3 highlights.

The paper by [6] also pointed out several area where the innacuracies might appear in

kernel estimation, including the rolling shutter effect, the effects of gravity on sensor read-

ings, as well as the possibility that the rotation center of the motion is not the sensor itself.

For these described problems, [6] gave a detailed analysis and proposed an online calibra-

tion method that utilizes light streaks and autocorrelation map–based methods in refining the

3In photography, clipped highlights refer to areas within a photo that shows up as pure white because of

luminance exceeding the camera sensor’s dynamic range.

9

initial motion sensor–provided kernel estimations.

2.2 Theoretical Framework

2.2.1 Convolution

In computer vision, convolution refers to 2-dimensional discrete convolution. Convolution is

an operation that can be used to mathematically express many forms of image degradation.

An image that has been artificially blurred, for instance, can be modeled the following way:

B = I ⊗ k (1)

where I , ⊗, k, and B respectively denotes the latent image, the convolution operator, the

blur kernel4 to which I is convolved with, and the blurred image. However, in real-world

circumstances, there is often the presence of additive noise [8]. Therefore, it is more common

in computer vision literature to model motion blur as

B = I ⊗ k + ε (2)

where ε, according to [9], denotes a “zero-mean, identically- and independently-distributed

noise term at every pixel.”

Eq. 3 breaks down how the convolution operator ⊗ in Eq. 2 works:

Bij =

[

M
∑

m=0

N
∑

n=0

I(i−m, j − n)k(m,n)

]

+ εij (3)

For Eq. 1 and Eq. 2, there are many possible blur kernels that can substituted into k. The

effects of box blur is well known: it effectively reduces the inter-element differences within

a certion region of a matrix—a “fuzzy” operator. A box blur kernel is one in which all its

elements are equal to one another. However, for the resulting image to retain the “brightness”

of its original counterpart, the elements within the kernel must add up to one. Meaning that

4Note that in the field of computer vision—especially in the context of deconvolution—the term “kernel” is

often used interchangeably with “point spread function” (PSF) and “impulse response function.”

10

a 3× 3 box blur kernel will have 1
9

spread over uniformly throughout the matrix:

k =
1

9









1 1 1

1 1 1

1 1 1









(4)

Another kernel that is often used apply artistic blur to images is the Gaussian kernel5.

k =
1

16









1 2 1

2 4 2

1 2 1









(5)

The use of convolution is not limited to blurs such as the ones described above. To

emulate motion blur, k from Eq. 2 can be substituted using kernels such as

k =
1

3









0 0 1

0 1 0

1 0 0









(6)

The resulting output B will exhibit a diagonal motion blur—as if the photographer moved

the camera from the bottom left to the top right when capturing the image.

Intuitively, kernels in convolution can be thought of as a description of how every single

point within an image is going to be “spread out,” hence the alternative term “point spread

function” (PSF). In other words, according to [10], it is a “ system response to a point source

placed at the origin of the image.” In order for the convolved image to retain the original

image’s luminosity, the cumulative value of the elements inside the kernels must add up to

one.

The images in Figure 1 illustrates how kernels like Eq. 5 and Eq. 6 affects an image

through convolution:

5Looking through the values within the matrix k in Eq. 5, one should notice that the Gaussian kernel (3× 3

in size) is based on the Gaussian distribution. Hence, the kernel is a discrete approximation of the actual

continuous distribution.

11

Original Image Convolved with (i) Convolved with (ii)

0 5 10

0.0

2.5

5.0

7.5

10.0

12.5

(i)

0 5 10

0.0

2.5

5.0

7.5

10.0

12.5

(ii)

Figure 1. Effects of convolution with a 15 × 15 Gaussian and linear (top right to bottom left) motion blur

kernels (PSF).

2.2.2 Deconvolution

The inverse to the convolution operation is known as deconvolution, as reported by [11]. To

a certain degree of accuracy, deconvolution makes it possible to recover an original image I

from a degraded one B (as modeled in Eq. 2). This reversion process, given a known PSF—

or at least a known estimate of it—is referred to as non-blind deconvolution. Conversely,

when no knowledge of the PSF is provided, the process is known as blind deconvolution

[12].

The idea behind classical non-blind deconvolution lies in the convolution theorem, which

is discussed by [13]:

f(x)⊗ g(x) ⇔ F (ω)G(ω) (7)

The theorem states that the convolution of two functions in the time domain is equivalent to

the product of their respective Fourier transforms6 in the frequency domain. The terms in

Eq. 1 may be expressed as functions

h(x) = (f ⊗ g)(x) (8)

6The Fourier transforms of functions are denoted by capital letters.

12

where f(x), g(x), and h(x) denotes the latent image, the PSF, and degraded image respec-

tively; and x = (x, y). With Eq. 8, deconvolution—that is, finding the unknown term f(x)

given a known g(x)—can be done by first computing the discrete Fourier transform of each

known terms, which can be symbolically expressed as F{•}:

H(ω) = F{h(x)} (9)

G(ω) = F{g(x)} (10)

Taking note of Eq. 7, the resulting Fourier transforms of the terms can then be arranged the

following way:

H(ω) = F (ω)G(ω) (11)

Here, we also denote the Fourier transform of the unknown term f(x) as F (ω) for conve-

nience. To find F (ω), Eq. 11 can be rearranged as

F (ω) =
H(ω)

G(ω)
(12)

Once F (ω) is calculated, its inverse Fourier transform (denoted as F−1{•}) can be computed

to find the original image f(x):

f(x) = F−1{F (ω)} (13)

However, as mentioned previously, it is more accurate to model natural motion blur with

an additive noise term

h(x) = (f ⊗ g)(x) + ψ(x) (14)

Because of the linearity property of Fourier transforms (while Eq. 7 states that convolution

in the time domain is multiplication in the frequency domain), addition in the time domain is

equivalent to addition in the frequency domain. When the noise term ψ(x) is involved, Eq.

13

11 becomes

H(ω) = F (ω)G(ω) + Ψ(ω) (15)

F (ω) =
H(ω)−Ψ(ω)

G(ω)
(16)

Eq. 16 above shows that to find F (ω)—and subsequently f(x)—in addition to g(x) and

h(x), the noise term ψ(x) would also need to be known. In natural images, knowledge of

additive noise is highly limited. Granted, a perfect knowledge of g(x), the PSF, can also be

difficult to obtain—although to a much lesser extent7.

Moreover, despite its relative simplicity, deconvolution using division in the Fourier do-

main (Eq. 16), there is a well-known tendency of noise amplification—to the point where

the original image becomes deteriorated to an unrecognizable extent rather than improved.

According to [14], the division in Eq. 16 is the main cause of the noise amplification: the

division of a small complex number by another small complex number will result in the

enlargement of the term F (ω). In addition, due to its nature of being a low-pass filter, the

Fourier transform G(ω) may be zero for high frequency. Because of its position in the de-

nominator of Eq. 16, a zero value for G(ω) in an expression containing a division-by-zero.

Wiener deconvolution is an algorithm that seeks to improve Eq. 12:

F ′(ω) =
H(ω)

G(ω)

[

1

1 + |Ψ(ω)|2/|F (ω)|2

|G(ω)|2

]

(17)

with
|Ψ(ω)|2

|F (ω)|2
being the signal-to-noise ratio (SNR), which is easier to estimate in the sense that

being off, as suggested by Eq. 17, allows for the noise to be attenuated rather than amplified

(as the case with Eq. 12).

The authors of [15] further improves upon a more advanced variation of the Wiener

filter—the Wiener-Hunt deconvolution algorithm. Their paper detailed an unsupervised ver-

sion of the algorithm (it jointly estimates the hyperparameters alongside the PSF and the

image of interest). The posterior law is obtained through the Bayes rule. In the algorithm,

the mean of the posterior law is used as the estimate, which is computed using Monte-Carlo

7especially with methods shown by [2], [7], and [9]

14

Markov chain algorithms.

2.2.3 Camera Movement and Spatial Variance

Images that are degraded by a single kernel are relatively easier to restore than ones that

have a spatially-variant set of kernels—that is, every pixel of the latent image may not be

convolved with the same kernel k; but rather a series of different kernels k1, k2, k3, . . . , kn.

Unfortunately, this is often the case with naturally-degraded images—as opposed to images

that are deliberately degraded by convolving them with some arbitrary kernel.

Motion blurs are caused by translational and rotational movements of the sensor in three-

dimensional space. With translational movements, the spatial variance depends on the depth

of the objects within the image due to perspective distortion, especially in an image where

its objects are of a sufficiently different distance. Objects that sits closer to the camera will

create much more motion blur that the ones that are farther away. With rotational movements,

spatial variance depends on the difference between pixel positions. The pixel x = (1, 1) may

not be convolved with the same PSF as, say, x = (27, 103).

The diagrams in Figure 2 and 3 illustrates the different spatial variance8 produced by

translational and rotational movements on all three axes.

y

x
z

Figure 2. PSF field produced by translational movements on the x, y, and z axes.

y

x
z

Figure 3. PSF field produced by rotational movements on the x, y, and z axes.

8With translational movements, spatial variance additionally depends on the depth of the scene.

15

According to [16], for a given blur amount δ, distance of the object from the camera

d, and focal length f , the amount of translation X and rotation θ needed to cause to cause

motion blur at the size of δ can be obtained through

X =
δ

f
d (18)

θ = tan−1

(

δ

f

)

(19)

With Eq. 18 and Eq. 19, we can infer the fact that it takes more translational displacement

than rotational displacement to create the same amount of motion blur, especially if the d is

sufficiently large.

2.2.4 Inertial Sensors Data

In most modern cameras, especially with smartphones camera, there are at least two inertial

sensors: the gyroscope and the accelerometer. The former captures the angular velocity of

the device on its x, y, and z axes at any given time. The latter captures the acceleration of

the device at those same three axes. Both sensors capture movements in a discrete fashion

with a specific sampling rate.

Figure 4 and 5 illustrates the kind of movements that can be recorded by a gyroscope and

an accelerometer respectively.

x
z

y

Figure 4. Rotational movement, the velocity of which

is captured by the gyroscope.

x
z

y

Figure 5. Translational movement, the acceleration of

which is captured by the accelerometer.

Rotation Since the gyroscope captures the device’s angular velocity rather than displace-

ment, the data directly obtained from it must be integrated to find the device’s displacement.

Let θ(t) be the angular displacement and α(t) be the angular velocity. The function θ(t) can

16

be found by

θ(t) =

∫

α(t) dt (20)

Since the θ(t) given by the gyroscope is discrete rather than continuous, Eq. 20 can be

rewritten into

θ(t) ≈
∑

∀t

α(t)τ (21)

where τ denotes the sampling interval. Eq. 21 is calculated for each x, y, and z axes of the

device. Alternatively, spline interpolation can be performed on the discrete gyroscope data

points to generate the polynomials representing the estimated continuous function. Due to

the nature of continuity, this approach allows for sampling at arbitrary values of t.

Translation The accelerometer of a device captures its acceleration on each of its x, y,

and z axes. Applying spline interpolation on the discrete accelerometer dataset allows for

the resulting continuous curve to have a twice-differentiability property, enabling for the

function’s second-order antiderivative to be found:

v(t) =

∫

a(t) dt (22)

δtranslation(t) =

∫

v(t) dt (23)

Here, v(t) and a(t) denotes the velocity and acceleration respectively. The translational dis-

placement is obtained through integrating the accelerometer spline twice. When the second-

order antiderivative is evaluated at t, the result, written as δtranslation(t), is the translation vector

itself (of size 3× 1), which shows the amount of translational displacement that has occured

since t0.

2.2.5 Homography

The PSF can of a motion-blurred image can be obtained through the capturing device’s in-

ertial sensor data. The motion of every pixel in the image sensor can be modeled using

projective transformation, often referred to as homography in the computer vision litera-

17

ture. The following equation describes how the homography transformation matrix can be

obtained [17]:

H = KRK
−1 (24)

According to [18], the homography transformation “describes the relationship between the

real-world scene and the picture on the image plane of the camera”. Given a known rotation

matrix ∆rotation(θ), translation vector δtranslation(t), distance d, and normal matrix of the scene

n = [0, 0, 1]⊤, R in Eq. 24 becomes

R(θ, t) = ∆rotation(θ)−
δtranslation(t)n

⊤

d
(25)

where ∆rotation(θ) is defined as

∆rotation(θ) =









cos θx − sin θx 0

sin θx cos θx 0

0 0 1

















cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

















1 0 0

0 cos θz − sin θz

0 sin θz cos θz









(26)

The rotation matrix is a product of the three standard elemental rotation matrix in x, y, and

z, as seen in [19]. The matrix K, according to [16], is the internal calibration matrix

K =









f s Px

0 f Py

0 0 1









(27)

that is described by the manufacturer of the camera. Here, Px and Py denotes the principal

points (normally defined as the center of the image sensor) and s denotes the camera’s skew

parameter.

When the distance d is far enough that translation no longer produces a significant enough

motion blur, i.e., d is larger than the focal length f , R in Eq. 24 can be simplified into

H = K∆rotation(θ)K
−1 (28)

18

2.2.6 Spline Interpolation

Spline interpolation is a method of constructing a smooth curve that passes through a given

set of data points. The most commonly used type of spline interpolation is the cubic spline

interpolation, where the curve is made up of piecewise cubic polynomials.

In a cubic spline interpolation, given a set of data points (x0, y0), (x1, y1), . . . , (xn, yn), a

cubic polynomial Si(x) is constructed for each interval [xi, xi+1]. In doing so, the following

conditions must hold: (1) the resulting spline is continuous,

Si(xi) = yi, ∀i = {0, 1, . . . , n− 1} , (29)

and (2) a continuous first and a second derivatives exists for all points,

d

dxi
Si(xi) =

d

dxi
Si+1(xi),

d2

dx2i
Si(xi) =

d2

dx2i
Si+1(xi), ∀i = {0, 1, . . . , n− 1} , (30)

Additionally, for a natural cubic spline, the second derivatives at the endpoints are set to

zero:

d

dx0
S0(x0) = 0,

d2

dx20
S0(x0) = 0. (31)

Each cubic spline Si(x) that sits between two points xi and xi+1 is defined by the cubic

polynomial

Si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (32)

where ai, bi, ci, and di are coefficients. To find these coefficients, in which there are 4n of

them, 4n equations needs to be set up and subsequently solved.

2.2.7 Structural Similarity Index (SSIM) for Image Similarity Measurement

First descibed by [20] in 2004, the Structural Similarity Index (SSIM) is a metric used to

measure the similarity between two images which, unlike traditional methods like Mean

19

Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR)—which focus on pixel-wise

differences, SSIM takes into account structural information, luminance, and contrast. This

image similarity measure provides a more perceptually relevant measure of image similarity—

as it was designed to better reflect human visual perception, which is more sensitive to struc-

tural patterns.

SSIM is based on three main factors, luminance, contrast, and structure: it measures

the degree of similarity between these three components for corresponding patches in two

images.

Given two images X and Y , SSIM can be defined as

SSIM(X, Y) =
(2µXµY + c1) (2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, (33)

where µX and µY denotes the mean pixel intensities of X and Y , σ2
Y and σ2

Y denotes the

variances of X and Y , and σXY is the covariance between X and Y . To prevent division-

by-zero or division by a very small quantity, two stabilizer variables c1 = (kiL)
2 and c2 =

(kiL)
2 are introduced. Here L is the dynamic range of the image values—which would be

255 for 8-bit images and 65,535 for 16-bit images (grayscale) and k ≪ 1 is a constant of

miniscule quantity.

20

CHAPTER III

METHODOLOGY

3.1 Tools and Resources

In obtaining the inertial sensor data, the hardware used is an Apple iPhone 13, which provides

all the inertial sensors needed to construct PSFs, i.e., a gyroscope, an accelerometer, and a

g-force sensor (used to determine the gravity vector from which the accelerometer data can

be subtracted to get linear acceleration). The software used to obtain the data is MATLAB®

Mobile, which is available on the device. MATLAB® Mobile allows for the logging of

inertial sensor data at a maximum frequency of 100 Hz.

The high-resolution images used to experiment with is obtained from the DIV2K dataset,

which provides a total of 1,200 high-resolution images to work with. Additionally, an Apple

iPhone 6 is used to capture samples of “real” PSFs to compare them with the PSF models

obtained through the PSF-generator algorithm presented in this research. The use of the

specific device is due to the lack of any optical and sensor-shift stabilization schemes in its

back camera, which could interfere with the resulting “real” PSFs.

The programming language of choice in this research is Python due to its ease of use

in defining and manipulating matrices—operations that are abundantly-done within this re-

search. All of the processing in this research is done on a remote Oracle® Cloud compute

unit with an Ampere A1 CPU, which is an ARM processor. The machine is configured to

have four OCPU9 cores and 24 gigabytes of memory.

3.2 General Overview

The product of this research is a photo processing pipeline that takes two inputs:

1. The image degraded by natural motion blur, which may have spatially-variant PSFs.

9The term OCPU refers to the Oracle CPU, which is a unit of measurement specific to Oracle Cloud Infras-

tructure compute instances. According to oracle, a single OCPU is worth “at least two vCPUs.”

21

2. The data regarding the spatial displacement of the camera sensor during the time the

sensor was exposed to light. This data is recorded by the device’s inertial sensors

(see 2.2). The inertial sensor data, which includes the translational and rotational

displacement helps provide an accurate information to estimate the blurry image’s

PSF.

Within the pipeline, the inertial sensor data is used to model a set of PSFs for different

area of the degraded image by passing it into a PSF-generator algorithm. The said algorithm

consists of two phases: (1) converting the inertial sensor data into Cartesian-represented

PSFs and (2) converting the Cartesian-represented PSFs into their matrix representation.

The PSF is then passed as a parameter, alongside the degraded image, into the unsupervised

Wiener-Hunt non-blind deconvolution algorithm so that the latent image can be recovered

from the degraded image.

Figure 6 shows the overall outline of the proposed software pipeline.

3.3 Implementation

The point of deconvolution is described in Chapter 2.2.2: to recover the unknown latent

image f(x) given a degraded image h(x) and estimated PSF g(x) (see Eq. 8). The im-

plementation details below is additionally given the appropriate inertial sensor data to (1)

generate the PSFs, which is the term g(x) in Eq. 8 critical to finding f(x) if h(x) is known.

After obtaining the PSFs, the Wiener-Hunt deconvolution algorithm is applied with h(x) and

g(x) as inputs in order to get f(x).

3.3.1 Processing Raw Inertial Sensor Data

The raw gyroscope, accelerometer, and g-force sensor data that was obtained needs to be

processed before it can be used to infer displacement. Linear acceleration is obtained by

subtracting the total acceleration data at each axis by the g-force data at each axis multiplied

22

by 9.80665 (recall that 1 g = 9.80665m/s2) at any given time t:

alinear(t) = atotal(t)− 9.80665 g(t) (34)

where alinear(t) = [axlinear, a
y
linear, a

z
linear]

⊤
, atotal(t) = [axtotal, a

y
total, a

z
total]

⊤
, and g(t) = [gx, gy, gz]

⊤
.

To make integrating more convenient, and to make evaluating the accelerometer data at

any t value possible, the inertial sensor data points can be interpolated to produce polynomi-

als that estimates the continuous version of the motion data. Spline interpolation, as detailed

in Chapter 2.2.6 (see Eq. 32), can be used in order to ensure twice-differentiability, which is

a property that is needed in order to obtain translational displacement.

For the gyroscope data, the first-order antiderivative is the rotational displacement of the

capturing device at its x, y, and z axes. For the linear acceleration data, the second-order

antiderivative is the translational displacement of the device.

3.3.2 Generating Point Spread Functions

Given a linear accelerometer data and a gyroscope data that captures the movement of the

image sensor as it was exposed to light (the movement during integration creates motion

blur), this research presents a new algorithm to generate PSFs for every possible points within

the image frame. The basic outline of the algorithm (devoid of implmentation detail) is given

below in Algorithm 1.

23

Algorithm 1 The conversion of inertial sensor data into Point Spread Functions

Start

Homography
Matrices

Construction

Linear
Acceleration

Data

Algorithm 2:
Pixelization
Algorithm

Cartesian
PSFs

Matrix
PSFs

 Homography
Matrices

Homography
(Projective)

Transformation

Angular
Velocity

Data

Stop

It is common in the image deconvolution literature to utilize inertial sensor data to con-

struct homography matrices (partly because it is intuitive to do so). However, as the use of

a two-phase PSFs construction—where the first phase creates Cartesian-represented PSFs,

represented as vector-valued functions (see Eq. 35), which is then further processed into

matrix-represented PSFs—as far as is known, has yet been discussed; their implementation

details will be discussed in the following paragraphs.

Constructing the Homography Matrix The homography matrix is defined by Eq. 25.

Before its construction, the translation vector and the rotation matrix needs to be obtained.

The translation vector is simply the vector that contains the values of the displacement of the

capturing device at x, y, and z. The rotation matrix, as instructed by Eq. 26, is a combination

of three 3×3 elemental transformation matrix (for 3-dimensional space): the rotation matrix

for the x axis, y axis, and z axis.

24

After obtaining the translation vector and rotation matrix, the value of the intrinsic matrix

is also needed. The matrix accepts the focal lengths in unit of pixels. The unit conversion

requires knowledge on the size of the pixels in millimeters. In the case of the iPhone 13, it is

0.0017 for the wide angle camera. The principal points, on the other hand, is normally put in

as the center of the image sensor. However, in the case where the gyroscope is away from the

center of the sensor, the principal points can be moved towards the location of that sensor—

away from the image frame. This is an ideal calibration model if the capturing device that is

used does not have its motion sensors aligned to the center of the camera sensor.

The final homography matrix can then be calculated using the formula presented in Eq.

24.

Generating the Cartesian Representation of the Point Spread Functions Now that the

homography matrix has been obtained, determining the point-spread in every part of the

image is convenient. It can be done simply by taking the homography matrix and the de-

sired homogeneous coordinate that falls within the original image frame (before the motion

began) and multiply them together. To convert an ordinary [x, y]⊤ coordinate into a homo-

geneous coordinate, augment the value 1 as the third value of that column vector, turning

it into [x, y, 1]⊤. After the transformation, the resulting homogeneous coordinate must be

normalized back by dividing every element with whatever the augmented element became

after the projective transformation (i.e., if the augmented value yielded a value of 6.3 after

the transformation, the each member of the vector needs to be divided by 6.3). After the di-

vision, the value of that augmented value would return to one. At this point, that augmented

value can be removed again.

The idea behind generating a continuous PSF is by computing the projective transfor-

mation of the desired points within the image at multiple times until the end of the desired

movement interval. Essentially, this is a sampling of the projective transformations in some

desired interval. The smoothness of the Cartesian-represented PSF depends on the how many

samples are taken within an interval.

Since the existance of rotational movements introduces spatial variance in PSFs, the

25

transformations can be done for evenly-sized sections of the image.

The Cartesian representation of the PSF is a vector-valued function (which is a function

where the domain is a real number while the range is a vector) that receives t (represented as

z) as input and outputs a 2× 1 vector [x, y]⊤:

r⃗ (z) = ⟨f (z) , g (z) , z⟩, (35)

where f(z) and g(z) are the component functions showing the x- and y-based displacement

of the point of interest during the homography transformation.

Generating the Matrix Representation of the Point Spread Functions This research

introduces a simple algorithm that converts the Cartesian representation of a PSF into its

matrix representation. Given a Cartesian plane with each of its 1 × 1 grid representing a

single pixel, this algorithm decides the actual pixel values in the matrix representation of the

PSF based on where coordinate falls on the PSF’s Cartesian plane representation.

More formally, given a point (x′, y′) in a Cartesian plane, its point of origin (the pixel

center point (x, y) that (x′, y′) sits closest to), and the pixel size 1× 1; where that continuous

point will lie can be computed if the Cartesian plane is discretized into an H ×W “image,”

(where each pixel is of size 1× 1), by Algorithm 2:

26

Algorithm 2 The conversion of a Cartesian plane coordinate into pixel values

1. Determine the displacement (∆x,∆y) of the point (x′, y′) from the point of origin

(x, y).

2. Based on the sign of (∆x,∆y), either negative or positive, determine the direction of

the neighboring pixels (i.e., north, northeast, east, southeast, south, southwest, west,

and northwest) that are “encroached” by the psuedo-pixel (the pixel projected by the

coordinate; that is, if the coordinate lies in the point of origin, the psuedo-pixel aligns

perfectly with the actual pixel) of (x′, y′).

3. For each affected neighboring pixels, determine the area that the psuedo-pixel of

(x′, y′) encroaches by the following equation:

Aencroached =















|∆x| (1− |∆y|) , encroached pixel is in the west
or east of the origin pixel;

|∆y| (1− |∆x|) , encroached pixel is in the north
or south of the origin pixel

|∆x| |∆x| , otherwise

(36)

Let K be the matrix representation of the PSF:

K =
∑

∀z∈Z

Φ (r⃗(z)) , (37)

where r⃗ (z) denotes the vector-valued function defined in Eq. 35 that is the Cartesian-

represented PSF. The values of the matrix-represented PSF, owing to the natural requirement

of post-convolution brightness retention, has to be normalized so that the matrix elements

sum up to 1,

K̃ =
K

1⃗ ⊤K 1⃗
, (38)

where 1⃗ is a column vector of ones [1, 1, . . . , 1]⊤. The expression 1⃗ ⊤K 1⃗ denotes the sum of

the elements of K. Here, the function Φ : R3 → {0, 1}N×M
is defined as

27

Motion-
Blurred
Image

Acceleration
Data

Angular
Velocity

Data
G-Force
Data

Homography
Matrices

Construction

Linear
Acceleration

Data

Inertial Sensor
Data CollectionImage Capturing

Algorithm 2:
Pixelization
Algorithm

Cartesian
PSFs

Matrix
PSFs

 Homography
Matrices

Homography
(Projective)

Transformation

Stop

Start

Wiener-Hunt
Deconvolution

Algorithm

Deblurred
Image

Algorithm 1
The conversion of inertial

sensor data into Point
Spread Functions.

Figure 6. A diagram showing the basic outline of the proposed software pipeline.

28

Φ

















x

y

z

















:=





































. . .
...

...
... . .

.

· · ·

{

−∆x∆y, ∆x < 0 and ∆y > 0,

0, otherwise;

{

∆y (1− |∆x|) , ∆y > 0,

0, otherwise;

{

∆x∆y, ∆x > 0 and ∆y > 0,

0, otherwise;
· · ·

· · ·

{

−∆x (1− |∆y|) , x < 0,

0, otherwise;
1− 1⃗ ⊤Φ

(

[x, y, z]⊤
)

1⃗

{

∆x (1− |∆y|) , x > 0,

0, otherwise;
· · ·

· · ·

{

−∆x (−∆y) , ∆x < 0 and ∆y < 0,

0, otherwise;

{

−∆y (1− |∆x|) , ∆y < 0,

0, otherwise;

{

∆x (−∆y) , ∆x > 0 and ∆y < 0,

0, otherwise;
· · ·

. .
. ...

...
...

. . .





































N×M

,

(39)

where ∆x = x − (⌊x⌋+ 0.5) and ∆y = y − (⌊y⌋+ 0.5). With a slight abuse of notation, the function Φ (v⃗) with v⃗ = [x, y, z]⊤ is defined in

terms of itself to mean that the expression 1 − 1⃗ ⊤Φ
(

[x, y, z]⊤
)

1⃗ denotes 1 subtracted by the sum of all the other elements within the matrix.

Note that the ⌊•⌋ operator denotes an operator that takes the integer part of a floating point number.

2
9

Figure 7 below illustrates how Algorithm 2 works:

0.111...

0.222...0.444...

0.222...
0.222... 0.111...

0.444... 0.222...

Figure 7. A visualization of how Algorithm 2 works.

It can be seen that the coordinate in the Cartesian-represented PSF, located northeast of

its “origin” (left), projects its psuedo-pixel that encroaches into its neighboring grids (i.e.,

north, northeast, and south). In the resulting matrix representation of the PSF (right), the

psuedo-pixel is distributed as discrete values in each entry of the matrix.

3.3.3 Non-Blind Deconvolution

The unsupervised Wiener-Hunt non-blind deconvolution algorithm takes in two inputs: the

degraded image and an estimated of the PSF that caused the image degradation. The out-

put of the algorithm is the restored image. The quality of the deblurring is dependent on

the accuracy of the provided PSF, i.e., how structurally similar it is to the true PSF. The

scikit-image library in Python provides an easy-to-use functional interface to this algo-

rithm, skimage.restoration.unsupervised_wiener().

Since the model of the motion blur is spatially-variant, each part of the degraded image

should be deconvolved with PSFs that are specific for that part. In addition to that, as will

be discussed later on, the Wiener-Hunt deconvolution algorithm, through testing, has the

tendency to give better deconvolution results when the image is relatively larger in itsH×W

size relative to the PSF it is deconvolved against. Therefore, to maximize the deconvolution

result, the pipeline deconvolves the image as many times as there are the number of PSFs

and subsequently join the parts of the image that are deconvolved against the their correct

offending PSFs.

30

3.4 Testing Scenario

To measure the difference in the Wiener-Hunt deblurring quality between the true and noisy

PSFs modeled by this pipeline, the mean structural similarity (see Chapter 2.2.7) of (1) the

image deblurred using the true PSF and (2) the image deblurred using the noisy PSF is

computed. The mean and variance of each patch of the images are spatially-weighted using

a normalized Gaussian kernel with σ = 0.2.

Additionally, to measure the accuracy of the PSF models themselves, this research pro-

vides “real” PSF samples obtained from deliberately motion-blurred images of small, bright

white points on a pitch-black background. The “real” PSF samples are obtained using a

camera that does not have any form of hardware image stabilization.

The qualitative features of the deblurred images are also explored. One point of interest

regarding the quality of the deblurred images is how much deconvolution artifacts are present

in the images after going through the deconvolution process and how complex are they are.

31

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Methodology Implementation

4.1.1 Inertial Sensor Data Collection

The inertial sensor data for this research was collected through the embedded sensors in an

Apple iPhone 13, namely its gyroscope, accelerometer, and g-force sensor. The reason for

the inclusion of the g-force sensor data is so that gravitational acceleration can be subtracted

from the accelerometer data to obtain linear acceleration (i.e., the actual acceleration of the

device as it moves in the x, y, and z direction).

Ensuring Twice-Differentiability All inertial sensor data that has been obtained needs

further processing to obtain the device’s rotational and translational displacement. To do so,

the discrete inertial sensor data needs to be interpolated (for continuity) and then integrated:

once for the gyroscope data to convert angular velocity to angular displacement, and twice

for the linear accelerometer data to obtain the amount of displacement.

According to [2], spline interpolation is a class of interpolation that ensures twice-

differentiability. In Python, spline interpolation can be utilized through scipy library’s

interpolate.UnivariateSpline class:

Listing 1. Using the scipy.interpolate.UnivariateSpline class

gyro_x_cont = scipy.interpolate.UnivariateSpline(t, gyro_x, s=0.002307)

gyro_y_cont = scipy.interpolate.UnivariateSpline(t, gyro_y, s=0.002307)

gyro_z_cont = scipy.interpolate.UnivariateSpline(t, gyro_z, s=0.002307)

accel_x_cont = scipy.interpolate.UnivariateSpline(t, accel_x, s=0.0782)

accel_y_cont = scipy.interpolate.UnivariateSpline(t, accel_y, s=0.0782)

accel_z_cont = scipy.interpolate.UnivariateSpline(t, accel_z, s=0.0782)

The use of spline interpolation in obtaining a continuous representation of the discrete inertial

sensor data also doubles as a noise filter. The s parameter in the UnivariateSpline class

constructor refers to a smoothing factor used to determine the number of knots used in the

32

interpolation [21]. Assigning 0 as the value of s will guarantee that the resulting continuous

curve passes through all data points. By successively increasing the value of s on (separately-

taken) noisy stationary inertial sensor data until a flat curve is obtained, one can effectively

interpolate through “genuine” data points only—ignoring noise. Through trial and error, it is

found that the sensor data provided by the iPhone 13 can be effectively filtered-out by setting

the smoothing factor to 0.002307 for the gyroscope spline and 0.0782 for the accelerometer

spline. (The accelerometer data has more noise compared to the gyroscope data, hence the

higher smoothing factor.)

Obtaining Displacement from Velocity and Acceleration The gyroscope provides data

on the angular velocity of the device in each of the x, y, and z axis. Taking the first-order

indefinite integral (antiderivative) of the of the angular velocity spline returns the spline

representing the angular displacement. Integrating UnivariateSpline objects can be con-

veniently done by calling its antiderivative() method:

Listing 2. Obtaining the first-order antiderivative of the gyroscope data

gyro_x_antiderivative = gyro_x_cont.antiderivative()

gyro_y_antiderivative = gyro_y_cont.antiderivative()

gyro_z_antiderivative = gyro_z_cont.antiderivative()

On the other hand, the accelerometer data needs to be integrated twice in order to achieve

translational displacement. The antiderivative() method can be called with an n param-

eter value of 2 in order to compute the second antiderivative of the UnivariateSpline

object:

Listing 3. Obtaining the second-order antiderivative of the accelerometer data

accel_x_antiderivative = accel_x_cont.antiderivative(n=2)

accel_y_antiderivative = accel_y_cont.antiderivative(n=2)

accel_z_antiderivative = accel_z_cont.antiderivative(n=2)

Figure 8 and 9 illustrates the first three seconds of the gyroscope and accelerometer data

splines, along with their first-order and second-order antiderivatives respectively.

33

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−0.15

−0.10

−0.05

0.00

0.05

0.10

A
n
gu

la
r
V
el
o
ci
ty

(r
ad

/s
)

Univariate Spline Interpolation Fit for Gyroscope Data

x Axis

y Axis

z Axis

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

R
ot
at
io
n
al

D
is
p
la
ce
m
en
t
(r
ad

)

First-Order Antiderivative of the Gyroscope Spline

x Axis

y Axis

z Axis

Figure 8. Gyroscope data spline and its first-order antiderivative.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

L
in
ea
r
A
cc
el
er
at
io
n
(m

/s
2
)

Univariate Spline Interpolation Fit for Linear Accelerometer Data

x Axis

y Axis

z Axis

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

0.00

0.02

0.04

0.06

D
is
p
la
ce
m
en
t
(m

)

Second-Order Antiderivative of the Linear Accelerometer Spline

x Axis

y Axis

z Axis

Figure 9. Linear accelerometer data spline and its second-order antiderivative.

34

4.1.2 Applying Homography to Estimate Point Movement

Translation Vector Constructing the translation vector is straightforward once the trans-

lational displacement data is already obtained. The translation vector for a movement that

spans from t0 (of the entire data points) to t can be obtained directly from evaluating δtranslation(t)

at t, which is the function that was produced from integrating alinear(t) twice.

The following listing is a function that extracts a translation vector given the three twice-

integrated linear acceleration splines (on x, y, and z)

Listing 4. Function to extract a translation vector given t (relative from t0)

def translation_vector(t, x_func, y_func, z_func):

return displacement(t, x_func, y_func, z_func)

where the displacement() function is defined as

Listing 5. Function to evaluate UnivariateSpline objects at t

def displacement(t, x_func, y_func, z_func):

assert isinstance(x_func, scipy.interpolate.UnivariateSpline) \

and isinstance(y_func, scipy.interpolate.UnivariateSpline) \

and isinstance(z_func, scipy.interpolate.UnivariateSpline), \

'`x_data`, `y_data`, and `z_data` must all be `scipy.interpolate.UnivariateSpline` objects.'

result = numpy.array([x_func(t), y_func(t), z_func(t)])

return result

Rotation Matrix The rotation matrix, ∆rotation(t, θ) is more complicated to construct. Eq.

26 detailed that the complete rotation matrix is a product of three matrices: the x, y, and z

rotation matrices. The following function computes the final rotation matrix. It accepts x,

y, and z as either the individual values of the integrated gyroscope data at time t if the t

parameter is not provided or the integrated splines themselves at all three axes if t is given a

value:

Listing 6. Function to construct the rotation matrix

def rotation_matrix(x, y, z, t=None):

if isinstance(x, scipy.interpolate.UnivariateSpline) \

and isinstance(y, scipy.interpolate.UnivariateSpline) \

and isinstance(z, scipy.interpolate.UnivariateSpline):

35

assert t is not None, \

'`t` cannot be empty if `x`, `y`, and `z` are instances of `scipy.interpolate.UnivariateSpline`.'

x_eval, y_eval, z_eval = displacement(t, x, y, z)

else:

x_eval, y_eval, z_eval = x, y, z

matrix_x = numpy.array([[numpy.cos(x_eval), -numpy.sin(x_eval), 0],

[numpy.sin(x_eval), numpy.cos(x_eval), 0],

[0, 0, 1]])

matrix_y = numpy.array([[numpy.cos(y_eval), 0, numpy.sin(y_eval)],

[0, 1, 0],

[-numpy.sin(y_eval), 0, numpy.cos(y_eval)]])

matrix_z = numpy.array([[1, 0, 0],

[0, numpy.cos(z_eval), -numpy.sin(z_eval)],

[0, numpy.sin(z_eval), numpy.cos(z_eval)]])

matrix = matrix_x @ matrix_y @ matrix_z

return matrix

Homography Matrix Eq. 25 detailed the construction of the homography matrix H. The

function below computes the homography matrix based on a parameterized focal length (in

millimeter), pixel size (in millimeter), distance between the image sensor and the object of

interest (in millimeter), and the height and width of the image (in pixels):

Listing 7. Function to combine the computed rotation matrix and translation vector to generate a homography

matrix

def homography(focal_length,

pixel_size: tuple,

distance,

image_shape: tuple,

gyro_x, gyro_y, gyro_z,

accel_x, accel_y, accel_z,

natural=numpy.array([0, 0, 1]),

t=None):

if distance <= focal_length:

R = rotation_matrix(gyro_x, gyro_y, gyro_z, t=t) \

- ((translation_vector(t, accel_x, accel_y, accel_z) \

if t != None else numpy.array([accel_x, accel_y, accel_z]) @ natural) \

/ (distance / pixel_size[0]))

else:

R = rotation_matrix(gyro_x, gyro_y, gyro_z, t=t)

36

f_x = focal_length / pixel_size[0]

f_y = focal_length / pixel_size[1]

c_x = image_shape[0] / 2

c_y = image_shape[1] / 2

K = numpy.array([[f_x, 0, c_x],

[0, f_y, c_y],

[0, 0, 1]])

H = K @ R @ numpy.linalg.inv(K)

return H

Adhering to Eq. 28, the function only considers using the translation vector information if

the distance is less than or equal to the focal length of the camera.

4.1.3 Generating Cartesian-Represented Point Spread Functions

The following listing is a class that represents an interval cut from the integrated angular

velocity spline and twice-integrated acceleration splines in all three axes:

Listing 8. An Interval helper class to represent an interval cut from the inertial sensor data

class Interval:

def __init__(self, start, end, resolution=1000):

assert start < end, '`start` must be less than `end`.'

self.start = start

self.end = end

self.num = math.ceil((end - start) * resolution)

def __str__(self):

return f'Interval({self.start}, {self.end})'

def __repr__(self):

return self.__str__()

def apply(self, *args, noise=None, upper_bound=None):

for arg in args:

assert isinstance(arg, scipy.interpolate.UnivariateSpline), \

str(arg) + ' is not an instance of `scipy.interpolate.UnivariateSpline`.'

if noise is not None:

assert isinstance(noise, float) or isinstance(noise, int), \

'`noise` must be an instance of `float` or `int`.'

assert upper_bound is not None, \

'`upper_bound` must also be defined if `noise` is defined.'

t = list()

for f in args:

37

rand = random.uniform(-noise, noise)

Check if index shifted by the random value will be valid

if (self.start + noise < 0) or (self.end + noise > upper_bound):

rand = -rand

t.append(numpy.linspace(self.start + rand, self.end + rand, num=self.num))

t.append(numpy.linspace(self.start, self.end, num=self.num))

else:

t = numpy.linspace(self.start, self.end, num=self.num)

evaluated = list()

for i in range(len(args)):

f_0 = args[i](self.start)

f_eval = args[i](t) if noise is None else args[i](t[i])

f_eval_normalized = [j - f_0 for j in f_eval]

evaluated.append(f_eval_normalized)

return t if noise is None else t[-1], *evaluated

The object on its own is a placeholder for the actual interval, which is cut from the splines

and returned when the apply() method is called. The method itself also accepts a noise

parameter that allows for inaccurate interval cutting, which later, will enable the simulation

of noisy PSF capturing. The actual returned value of the method is the values of each splines

between start and end with a sampling rate defined by the resolution parameter in the

object’s initialization.

The Interval class is used to conveniently define the interval from the splines to use

when generating the continuous PSF with the generate_psf() function below:

Listing 9. Function to generate the continuous PSF

def generate_psf(interval: Interval,

focal_length: float,

pixel_size: tuple,

distance: float,

image_shape: tuple,

gyro_x_func, gyro_y_func, gyro_z_func,

accel_x_func, accel_y_func, accel_z_func,

patches: tuple,

natural=numpy.array([0, 0, 1]),

noise=None,

upper_bound=None):

assert isinstance(interval, Interval), \

38

'Input `interval` is not an instance of the `Interval` object.'

t, gyro_x, gyro_y, gyro_z, accel_x, accel_y, accel_z

= interval.apply(gyro_x_func, gyro_y_func, gyro_z_func,

accel_x_func, accel_y_func, accel_z_func,

noise=noise, upper_bound=upper_bound)

patch_width = image_shape[0] / patches[0]

patch_height = image_shape[1] / patches[1]

centers = list()

for i in range(patches[0]):

for j in range(patches[1]):

center_x = (j + 0.5) * patch_width

center_y = (i + 0.5) * patch_height

centers.append(numpy.array([center_x, center_y]))

psf = list()

for i in range(len(t)):

H = homography(focal_length,

pixel_size,

distance,

image_shape,

gyro_x[i], gyro_y[i], gyro_z[i],

accel_x[i], accel_y[i], accel_z[i])

Compute transformations for each points

psf.append(list())

for j in centers:

psf[i].append(transform(H, j))

complete_psf = numpy.array([[numpy.append(y, t[i]) for y in x] \

for i, x in enumerate(psf)]).transpose((1, 0, 2))

return complete_psf

The return value of the generate_psf() function is a list of n×3 matrix where each column

represents an axis (n is the number of samples of the splines value that was taken by the

Interval object). The z axis represents time, while x and y represents a coordinate in the

Cartesian plane at time z. This (x, y) coordinate denotes where a point in the original image

frame (that is, the coordinate at z0) have moved to at zn. This PSF is noted as continuous

because of the nature of coordinates in a Cartesian plane. (The z axis, however, is discrete

as it is the result of the Interval class’ sampling from the splines.)

The generate_psf() function also accepts a patches tuple of two that defines how the

target image is divided when its corresponding PSF is computed. The product of the two

39

numbers in the tuple determines the number of grids the image is divided into, with one PSF

computed for each grid. This allows for the computation of PSFs that are spatially-variant,

i.e., different for parts of the image. The accuracy of the spatial variance can be determined

freely through manipulating the number passed into the patches parameter.

The following is an example usage of the generate_psf() function, where the transla-

tional and rotational displacement data provided by the splines are taken from ta = 21 and

tb = 21.2 (0.2 seconds in total):

Listing 10. An example usage of the generate_psf() function

psf = generate_psf(Interval(21, 21.2),

26,

(0.0017, 0.0017),

30,

(4032, 3024),

gyro_x_antiderivative, gyro_y_antiderivative, gyro_z_antiderivative,

accel_x_antiderivative, accel_y_antiderivative, accel_z_antiderivative,

(4, 3))

The other parameters, namely the focal length, the pixel size, and the image shape are taken

from the iPhone 13’s specification. The grid size is set to 4× 3 meaning that there is a total

of 12 PSFs generated.

Figure 10 and 11 illustrates the PSF that was computed for each of the twelve sections

within the image; in 3-dimensional space, where the z axis indicates time (s); and in 2-

dimensional space, where the z axis is hidden, showing only the movement in x and y.

40

500

520

540

260

280

21.00

21.05

21.10

21.15

21.20

PSF 1

1520

1540
260

280

21.00

21.05

21.10

21.15

21.20

PSF 2

2520

2540

2560

260

280

21.00

21.05

21.10

21.15

21.20

PSF 3

3540

3560
260

280

21.00

21.05

21.10

21.15

21.20

PSF 4

4540

4560

4580

260

280

21.00

21.05

21.10

21.15

21.20

PSF 5

5540

5560

5580
260

280

300

21.00

21.05

21.10

21.15

21.20

PSF 6

500

520

540

760

780

21.00

21.05

21.10

21.15

21.20

PSF 7

1520

1540
760

780

800

21.00

21.05

21.10

21.15

21.20

PSF 8

2520

2540

2560

760

780

800

21.00

21.05

21.10

21.15

21.20

PSF 9

3540

3560
760

780

800

21.00

21.05

21.10

21.15

21.20

PSF 10

4540

4560

4580

760

780

800

21.00

21.05

21.10

21.15

21.20

PSF 11

5540

5560

5580
760

780

800

21.00

21.05

21.10

21.15

21.20

PSF 12

Figure 10. Cartesian-Represented PSF plotted in 3-dimensional space, with z axis as time.

500 520 540

250

260

270

280

290 PSF 1

1520 1540

250

260

270

280

290
PSF 2

2520 2540 2560

250

260

270

280

290
PSF 3

3540 3560

250

260

270

280

290
PSF 4

4540 4560 4580

250

260

270

280

290

PSF 5

5540 5560 5580

250

260

270

280

290

PSF 6

500 520 540

750

760

770

780

790

PSF 7

1520 1540

750

760

770

780

790

PSF 8

2520 2540 2560

760

770

780

790

PSF 9

3540 3560

760

770

780

790

800

PSF 10

4540 4560 4580

760

770

780

790

800

PSF 11

5540 5560 5580

760

770

780

790

800
PSF 12

Figure 11. Cartesian-Represented PSF plotted in 2-dimensional space, omitting the z.

41

4.1.4 Converting Cartesian-Represented Point Spread Functions into their Matrix

Representations

The listing below is the Python implementation of Algorithm 2 into the function pixelate():

Listing 11. Python implementation of Algorithm 2

def pixelate(x, y, x_origin, y_origin):

x_disp = x - x_origin

y_disp = y - y_origin

encroached = dict()

if x_disp > 0 and y_disp > 0:

encroached.update({'north': None, 'northeast': None, 'east': None})

elif x_disp > 0 and y_disp < 0:

encroached.update({'east': None, 'southeast': None, 'south': None})

elif x_disp < 0 and y_disp < 0:

encroached.update({'south': None, 'southwest': None, 'west': None})

elif x_disp < 0 and y_disp > 0:

encroached.update({'west': None, 'northwest': None, 'north': None})

elif x_disp > 0 and y_disp == 0:

encroached['east'] = None

elif x_disp < 0 and y_disp == 0:

encroached['west'] = None

elif x_disp == 0 and y_disp > 0:

encroached['north'] = None

elif x_disp == 0 and y_disp < 0:

encroached['south'] = None

else:

pass

for pixel in encroached:

if pixel == 'west' or pixel == 'east':

encroached[pixel] = abs(x_disp) * (1 - abs(y_disp))

elif pixel == 'north' or pixel == 'south':

encroached[pixel] = abs(y_disp) * (1 - abs(x_disp))

else:

encroached[pixel] = abs(x_disp) * abs(y_disp)

encroached['self'] = 1 - sum(encroached.values())

return encroached

The function above is meant to be applied to a coordinate in the Cartesian plane, where each

1× 1 grid represents a single pixel. It returns a dictionary detailing how much value should

42

each pixel in the PSF’s discrete representation be given relative to the origin pixel.

The function below, pixelate_psf() applies the pixelize() function to a continuous

PSF generated by generate_psf():

Listing 12. Function to apply Algorithm 2 to continuous PSFs

def pixelate_psf(psf):

Figure out the minimum and maximum values of x and y

x_min = min(psf[:, :1].flatten())

x_max = max(psf[:, :1].flatten())

y_min = min(psf[:, 1:2].flatten())

y_max = max(psf[:, 1:2].flatten())

Normalize all x and y values

x_all = psf[:, :1] - x_min

y_all = psf[:, 1:2] - y_min

x_bound_original = x_max - x_min

y_bound_original = y_max - y_min

Round up `x_bound_original` and `y_bound_original` and shift all x and y

values accordingly

x_bound = math.ceil(x_bound_original)

y_bound = math.ceil(y_bound_original)

x_all += 0.5 * (x_bound - x_bound_original)

y_all += 0.5 * (y_bound - y_bound_original)

If `x_bound` and/or `y_bound` are even, make them odd and shift all x and

y values accordingly

if x_bound % 2 == 0:

x_bound += 1

x_all += 0.5

if y_bound % 2 == 0:

y_bound += 1

y_all += 0.5

Add a 1-padding on all sides (meaning 2-padding on x and 2-padding on y)

and shift all x and y values accordingly

x_bound += 2

x_all += 1

y_bound += 2

y_all += 1

Make the x and y axis equal and shift all x and y values

Since both `max_dimension` and `min_dimension` are odd, the difference will be even

dimension_difference = x_bound - y_bound

if dimension_difference > 0: # x is larger

43

y_bound += abs(dimension_difference)

y_all += 0.5 * abs(dimension_difference)

elif dimension_difference < 0: # y is larger

x_bound += abs(dimension_difference)

x_all += 0.5 * abs(dimension_difference)

Construct empty matrix

matrix = numpy.zeros((y_bound, x_bound))

Combine `x_all` and `y_all`

points = numpy.concatenate((x_all, y_all), axis=1)

for point in points:

x, y = point

x_origin, y_origin = find_origin(x, y)

area = pixelate(x, y, x_origin, y_origin)

origin_index_row = math.floor(y)

origin_index_col = math.floor(x)

Because of the difference in `numpy.ndarray` indexing and Cartesian

indexing, also factoring in the fact that the matrix will be flipped

later, north here becomes the pixel below while west remains west

for k in area:

if k == 'north':

matrix[origin_index_row + 1, origin_index_col] += area[k]

elif k == 'northeast':

matrix[origin_index_row + 1, origin_index_col + 1] += area[k]

elif k == 'east':

matrix[origin_index_row, origin_index_col + 1] += area[k]

elif k == 'southeast':

matrix[origin_index_row - 1, origin_index_col + 1] += area[k]

elif k == 'south':

matrix[origin_index_row - 1, origin_index_col] += area[k]

elif k == 'southwest':

matrix[origin_index_row - 1, origin_index_col - 1] += area[k]

elif k == 'west':

matrix[origin_index_row, origin_index_col - 1] += area[k]

elif k == 'northwest':

matrix[origin_index_row + 1, origin_index_col - 1] += area[k]

elif k == 'self':

matrix[origin_index_row, origin_index_col] += area[k]

flipped_matrix = numpy.flip(matrix, 0)

normalized_flipped_matrix = flipped_matrix / numpy.sum(flipped_matrix)

return normalized_flipped_matrix

44

Due to its design, the pixelate_psf() function, in creating the discrete PSF, will assign

higher values to pixels with more coordinates that falls in its Cartesian plane representa-

tion. When the capturing device’s image frame moves in 3-dimensional space, it does not

move with a constant velocity. Slower movement will result in a denser sampling from the

Interval object’s apply() method, which translates to brighter regions in the discrete PSF.

Additionally, in order to preserve brightness of the image the PSF is going to be con-

volved against, the pixelate_psf() function normalizes the PSF matrix values in a way

that causes them to sum into 1 (see Eq. 38).

Figure 12 shows the discrete version of the PSFs shown in Figure 10 and 11.

0 10 20 30 40

0

10

20

30

40

PSF 1

0 10 20 30 40

0

10

20

30

40

PSF 2

0 10 20 30 40

0

10

20

30

40

PSF 3

0 10 20 30 40

0

10

20

30

40

PSF 4

0 10 20 30 40

0

10

20

30

40

PSF 5

0 20 40

0

10

20

30

40

50

PSF 6

0 10 20 30 40

0

10

20

30

40

PSF 7

0 10 20 30 40

0

10

20

30

40

PSF 8

0 10 20 30 40

0

10

20

30

40

PSF 9

0 10 20 30 40

0

10

20

30

40

PSF 10

0 10 20 30 40

0

10

20

30

40

PSF 11

0 10 20 30 40

0

10

20

30

40

PSF 12

Figure 12. Discrete PSF plotted as an image, where black means zero values.

4.1.5 Realistic Modeling of Motion-Blurred Images

The discrete PSFs produced by pixelate_psf() is a model of how pixels within an image

is “spread” throughout the area around it as the image frame of the capturing device moves

45

(during the time the image sensor is exposed to light). Performing convolution on an arbitrary

image of a size for which the PSFs were designed for (through the image_shape tuple in the

parameter of the homograpy() function) will yield in a motion-blurred image that reflects

what an image captured by the moving device’s camera (assuming the capturing device’s

principal point is at the center of the image sensor) with a shutter speed roughly equal to

the size of the PSF sampling interval (Interval.apply()) would look like. The following

code listing shows the use of the cv2 library’s filter2D() function to convolve an image

against a kernel (PSF):

Listing 13. Convolving an RGB image against a PSF

image = cv2.imread('./original.png')

convolved_image = cv2.filter2D(image, -1, cv2.flip(psf_matrix, -1))

Because the filter2D() function performs correlation (otherwise known as filtering), i.e.—

convolution where the kernel is not mirrored against its anchor point—the kernel would have

to be flipped first by 180◦ counter-clockwise before passing it to the filter2D function.

However, as mentioned by Eq. 2, a realistic modeling of an image with a natural motion

blur involves an (often) Gaussian additive noise that is independent at every pixel of the

image. The following code snippet generates an H ×W × 3 tensor of noise sampled from a

standard normal Gaussian distribution and adds it to the image tensor:

Listing 14. Adding additive Gaussian noise to the motion-blurred image

gaussian_additive = numpy.random.normal(0, 1, (convolved_image.shape[0],

convolved_image.shape[1],

convolved_image.shape[2]))

gaussian_additive = gaussian_additive.reshape(convolved_image.shape[0],

convolved_image.shape[1],

convolved_image.shape[2])

gaussian_additive = numpy.rint(gaussian_additive)

noisy_convolved_image = convolved_image + gaussian_additive

noisy_convolved_image = numpy.clip(noisy_convolved_image, 0, 255).astype(numpy.uint8)

The resulting degraded image will faithfully replicate the motion blur model provided in

Eq. 2. This can be seen from comparing the PSF models to “real” PSFs obtained through

photographing small, bright white points (with deliberate motion blur) against a pitch black-

46

background.

4.1.6 Removing Motion Blur from Images

With consumer grade inertial sensors, noise is an unavoidable factor that one has to consider

when modeling PSFs. With sampling short intervals from inertial sensors, issues such as drift

are negligible. During the fitting of the spline curve on the raw data points, the application

of smoothing factors also contributes to noise reduction. However, there is the possibility

of noise caused by sensor reading delay. (It is understandable for the motion sensors of

consumer-grade devices to have this property, since they are mainly used for purposes that

does not require pin-point precision, such as gaming controls.) Hence, with such inertial

sensors, to a certain degree, discrepancies exist between an image’s and estimated PSFs.

This, in turns, suggest that in a realistic situation, the PSF estimation fed to the non-blind

deconvolution algorithm alongside the degraded image has a degree noise caused by sensor

reading delay.

To model the noise caused by sensor reading delay, normally, a Gaussian probability

distribution would be used. However, in the case where the parameters that is required

to build the Gaussian probability density function (PDF) is not given, i.e., the mean (µ)

and the standard deviation (σ), a crude approach using a uniformly-distributed PDF can

be used instead. The uniform distribution’s two parameters (θ1 and θ2) can be adjusted

manually in a way that does not cause the resulting noisy PSF to deviate too far from the

true PSF. (A Gaussian distribution with µ = 0 and a manually-adjusted σ can also be used.

However, µ = 0 will cause a large portion of the resulting noisy PSF to not deviate from

the true PSF at all.) The uniform distribution’s θ1 and θ2 parameters can be passed on to

the Interval.apply() method’s noise parameter described earlier in order to generate a

noisy PSF.

The code listing below shows how the unsupervised version of the Wiener-Hunt algo-

rithm would be applied to a motion-blurred image with a (likely noisy) PSF estimation:

Listing 15. Using the unsupervised version of the Wiener-Hunt deconvolution algorithm

deconvolved_image = numpy.zeros(noisy_convolved_image.shape)

47

for i in range(3):

deconvolved_image[:, :, i], _

= skimage.restoration.unsupervised_wiener(noisy_convolved_image[:, :, i] / 255,

psf_estimation)

deconvolved_image = numpy.clip(deconvolved_image, 0, 1)

This applies the non-blind deconvolution algorithm to all three color channels of the de-

graded image. (The input image is also normalized so that its individual pixel values lie in

the interval [0, 1] as required by the skimage.restoration module.)

Figure 13, 14, 15, and 16 shows the difference between deconvolving using true and

noisy PSFs.

Original Image

0 20 40

0

10

20

30

40

PSF Convolved Image

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

Figure 13. Convolving an image and deconvolving it with its true PSF (example 1).

48

Original Image

0 20 40

0

10

20

30

40

PSF Convolved Image

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

Figure 14. Convolving an image and deconvolving it with a noisy estimate PSF (example 1).

Original Image

0 20 40 60

0

20

40

60

PSF Convolved Image

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

Figure 15. Convolving an image and deconvolving it with its true PSF (example 2).

49

Original Image

0 25 50 75

0

20

40

60

80

PSF Convolved Image

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

Figure 16. Convolving an image and deconvolving it with a noisy estimate PSF (example 2).

4.2 Results

4.2.1 PSF Model Accuracy

The figures 17 and 18 shows the similarity between the model PSFs generated by Algorithm

1 and the “real” PSFs captured through a camera, as mentioned in Chapter 3.4:

−1500 −1000 −500 0 500

x

52000

52500

53000

53500

54000

54500

55000

55500

(a) PSF models. (b) “Real” PSFs.

Figure 17. Sample 1 illustrating the similarity between model PSFs and “real” PSFs.

50

−1000 −500 0 500

x

52500

53000

53500

54000

54500

55000

55500

(a) PSF models. (b) “Real” PSFs.

Figure 18. Sample 2 illustrating the similarity between model PSFs and “real” PSFs.

Through the use of the SSIM metric detailed in Chapter 2.2.7, it is found that the average

model PSFs have an average similarity of 0.901 (a SSIM score of 1 would indicate a perfect

match while −1 means that the compared images does not share any kind similarity).

4.2.2 Deblurring Results with Increasingly Noisy PSF

The following figures, 19, 20, 21, 22, and 23 shows deconvolution results using noisy PSF

estimates that are increasingly dissimilar from the true PSF:

51

Original Image

0 20 40

0

10

20

30

40

True PSF Noisy Convolved Image

0 20 40

0

10

20

30

40

Noisy PSF Estimate

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.9067516495080681, PSF Structural Similarity: 0.9944581456576461, PSF Noise: 0.01

Figure 19. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.01 seconds.

Original Image

0 20 40

0

10

20

30

40

True PSF Noisy Convolved Image

0 20 40

0

10

20

30

40

Noisy PSF Estimate

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.8793671773408884, PSF Structural Similarity: 0.9849339881879172, PSF Noise: 0.025

Figure 20. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.025 seconds.

52

Original Image

0 20 40

0

10

20

30

40

True PSF Noisy Convolved Image

0 10 20 30

0

5

10

15

20

25

30

Noisy PSF Estimate

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.830399988472709, PSF Structural Similarity: 0.8619838899216408, PSF Noise: 0.05

Figure 21. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.05 seconds.

Original Image

0 20 40

0

10

20

30

40

True PSF Noisy Convolved Image

0 10 20 30

0

5

10

15

20

25

30

Noisy PSF Estimate

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.5438606211479362, PSF Structural Similarity: 0.8495355369654515, PSF Noise: 0.075

Figure 22. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.075 seconds.

53

Original Image

0 20 40

0

10

20

30

40

True PSF Noisy Convolved Image

0 20 40

0

10

20

30

40

Noisy PSF Estimate

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.706322773980524, PSF Structural Similarity: 0.8304805549475254, PSF Noise: 0.5

Figure 23. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.5 seconds.

4.2.3 Deconvolution Results with Spatially-Variant PSFs

The figures 24, 25, and 26 shows the result of deconvolution when the image is degraded by

a set of PSFs that are spatially-variant:

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

Original Image

0 50 100 150 200 250

0

25

50

75

100

125

150

175

Original Image, Zoomed-In

Figure 24. The original image before a spatially-variant motion blur degradation.

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

Motion-Blurred Image

0 50 100 150 200 250

0

25

50

75

100

125

150

175

Motion-Blurred Image, Zoomed-In

Figure 25. The spatially-variant motion-blurred image.

54

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

Deblurred Image

0 50 100 150 200 250

0

25

50

75

100

125

150

175

Deblurred Image, Zoomed-In

Figure 26. The result of the spatially-variant deconvolution.

The PSF models for the image above was computed with a 3× 4 (H ×W) grid through

the information provided from motion sensors. The image itself was deconvolved twelve

(3 × 4 = 12) times, after which, the accurately-deblurred parts of each resulting images are

assembled to construct the final latent image.

It is also found that with an average PSF SSIM-based difference of 0.928 (between the

PSF used to simulate the motion blur and the PSF used in the deconvolution process), the

deblurred image and the original image produced an average SSIM score of 0.881.

4.3 Discussion

The part of this research detailing the design and implementation of the pipeline responsible

for converting inertial sensor data into discrete PSFs provides a uniquely comprehensive

discussion on the topic, compared to other research in the deconvolution literature such as

[3], [6], [5], and [18].

In using the unsupervised Wiener-Hunt non-blind deconvolution algorithm, this research

finds that as the spatial similarity between the true PSF and the noisy PSF estimate (that is

used to deconvolve the image) shrinks, the spatial similarity between the images deconvolved

with the true PSF and the noisy PSF estimate also drops. In Figure 19, partly because of the

low noise introduced to the sampling interval, both the PSFs and the deconvolved images

exhibit very high similarity to their noisy counterparts. As the spatial similarity of the PSFs

get smaller, so do the spatial similarity of the deconvolved images. When a noise of 0.075

is introduced to the sampling interval, which causes the PSF spatial similarity to drop from

0.862 (when the noise was set to 0.05) to 0.849, the quality of the deblurring noticeably

55

degrades, dropping the deconvolved images’ spatial similarity to 0.544.

However, as noted by Figure 23, this trend is not always the case.

Additionally, this research finds that the quality of the deblurring is correlated to the ratio

of the degraded image size to the PSF size; as the PSF gets relatively smaller compared to

the degraded image that it is deconvolved against, the quality of deblurring improves. (This

is partly caused by the fact that larger PSFs mean more motion blur for the deconvolution

algorithm to attempt to reverse.) In this case, the improvement of the deblurring quality

mostly lies on the density of the image artifacts caused by the deconvolution. However, even

with dense image artifacts, the deblurring manages to yield almost all the details that was

highly latent in the motion-blurred image, especially when the PSF estimate that was passed

into the deconvolution algorithm does not deviate highly from the true PSF. As the estimated

PSF deviates from the true PSF, the deblurred image loses details that would otherwise be

present without the deviation.

Because of this property, the deconvolution part of the pipeline convolves the entire im-

age with every PSFs that were computed for it through the inertial sensor data. This is done to

maximize the size ratio between the PSF and the degraded image, which in turns, minimizes

the appearance of artifacts in the deblurring results.

Aside from the relative size difference between the degraded image and its corresponding

PSF, the deconvolution quality also depends on the complexity of the PSF, i.e., an image

motion-blurred by a linear PSF will deconvolve to a clearer image. The complexity of the

kernel affects the “shapes” taken by the deconvolution artifacts, so a more complex PSF also

tend to cause more complex patterns in the artifacts (which are harder to see image details

through).

56

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This research highlights several critical factors influencing the quality of image deblurring

when using the unsupervised Wiener-Hunt non-blind deconvolution algorithm—with PSFs

estimated through the motion data–to–PSF pipeline detailed in the previous section. First,

the relationship between the spatial similarity of the true and (noisy) estimated PSFs and the

resulting deconvolved images is clear: as the spatial similarity between the PSF estimate and

the true PSF decreases, the quality of the deconvolution also deteriorates. This is particularly

evident when noise is introduced into the sampling interval, which causes both the PSFs and

the deconvolved images to lose fidelity as their spatial similarity declines. The findings

underscore the importance of accurate PSF estimation in non-blind deconvolution processes,

with even small deviations from the true PSF having the potential to significantly affect the

clarity and detail of the deconvolved images.

Additionally, this research shows that the relative size of the PSF to the degraded image

plays a pivotal role in determining the deconvolution quality. As the PSF becomes smaller

relative to the degraded image, the deconvolution process tends to yield clearer results, pri-

marily due to a reduction in the density of image artifacts that partly obscures fine details.

However, even in cases with high artifact density, the deblurring process can still recover

substantial latent image details, especially when the PSF estimate is relatively accurate. This

underscores the importance of both the size and the shape complexity of the PSF in achieving

high-quality deblurring.

5.2 Recommendations

Based on the findings of this research, it is recommended that future work on image de-

blurring focus on enhancing PSF estimation techniques in noisy environments. Researchers

should explore inertial sensor data denoising techniques that can estimate the probability

57

density function (PDF) of an inertial sensor’s reading delay. This method can replace the

uniform PDF approach that was used in this research to estimate the sensor reading delays.

Further research could also build on the end of the image deblurring pipeline provided

in this research. One possible avenue to explore is the retrieval of latent images from behind

the deconvolution artifacts produced by the Wiener-Hunt algorithm.

58

REFERENCES

[1] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for

smartphone cameras,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1692–1700.

[2] S. Nayar and M. Ben-Ezra, “Motion-based motion deblurring,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 689–698, 2004.

[3] J. Mustaniemi, J. Kannala, S. Särkkä, J. Matas, and J. Heikkila, “Gyroscope-aided mo-

tion deblurring with deep networks,” in 2019 IEEE Winter Conference on Applications

of Computer Vision (WACV), 2019, pp. 1914–1922.

[4] “What is Camera Calibration?” https://www.mathworks.com/help/vision/ug/

camera-calibration.html, Accessed: 15 September 2024.

[5] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring using

inertial measurement sensors,” ACM Trans. Graph., vol. 29, no. 4, Jul 2010. [Online].

Available: https://doi.org/10.1145/1778765.1778767

[6] Z. Hu, L. Yuan, S. Lin, and M.-H. Yang, “Image deblurring using smartphone iner-

tial sensors,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 1855–1864.

[7] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and partially saturated im-

ages,” in 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops), 2011, pp. 745–752.

[8] A. Gopatoti, “Image denoising using spatial filters and image transforms: A review,”

International Journal for Research in Applied Science and Engineering Technology,

vol. 6, pp. 3447–3452, 2018. [Online]. Available: https://api.semanticscholar.org/

CorpusID:57598681

59

https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://doi.org/10.1145/1778765.1778767
https://api.semanticscholar.org/CorpusID:57598681
https://api.semanticscholar.org/CorpusID:57598681

[9] A. Goldstein and R. Fattal, “Blur-kernel estimation from spectral irregularities,” in

Computer Vision – ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and

C. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 622–635.

[10] C.-M. Kao, P. L. Rivière, and X. Pan, “Chapter 6 - Basics of imaging theory

and statistics,” in Emission Tomography, M. N. Wernick and J. N. Aarsvold,

Eds. San Diego: Academic Press, 2004, pp. 103–126. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780127444826500090

[11] S. W. Smith, “Chapter 17 - Custom filters,” in Digital Signal Processing,

S. W. Smith, Ed. Boston: Newnes, 2003, pp. 297–310. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780750674447500546

[12] J. M. Blackledge, “Chapter 12 - image restoration and reconstruction,” in Digital

Image Processing, ser. Woodhead Publishing Series in Electronic and Optical

Materials, J. M. Blackledge, Ed. Woodhead Publishing, 2005, pp. 404–438. [Online].

Available: https://www.sciencedirect.com/science/article/pii/B9781898563495500124

[13] ——, “Chapter 2 - 2D Fourier theory,” in Digital Image Processing, ser.

Woodhead Publishing Series in Electronic and Optical Materials, J. M. Blackledge,

Ed. Woodhead Publishing, 2005, pp. 30–49. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/B9781898563495500021

[14] M. F. Wahab and T. C. O’Haver, “Peak deconvolution with significant noise suppression

and stability using a facile numerical approach in Fourier space,” Chemometrics

and Intelligent Laboratory Systems, vol. 235, p. 104759, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0169743923000096

[15] F. Orieux, J.-F. Giovannelli, and T. Rodet, “Bayesian estimation of regularization

and point spread function parameters for Wiener–Hunt deconvolution,” Journal of the

Optical Society of America A, vol. 27, no. 7, p. 1593, Jun 2010. [Online]. Available:

http://dx.doi.org/10.1364/JOSAA.27.001593

60

https://www.sciencedirect.com/science/article/pii/B9780127444826500090
https://www.sciencedirect.com/science/article/pii/B9780750674447500546
https://www.sciencedirect.com/science/article/pii/B9781898563495500124
https://www.sciencedirect.com/science/article/pii/B9781898563495500021
https://www.sciencedirect.com/science/article/pii/B9781898563495500021
https://www.sciencedirect.com/science/article/pii/S0169743923000096
http://dx.doi.org/10.1364/JOSAA.27.001593

[16] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring for shaken

images,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2010, pp. 491–498.

[17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.

Cambridge University Press, ISBN: 0521540518, 2004.

[18] K. S. Singh, M. Diwakar, P. Singh, and D. Garg, “Inertial sensor aided motion blur

kernel estimation for cooled IR detector,” Optics and Lasers in Engineering, vol. 175,

p. 108014, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0143816623005420

[19] S. Kim and M. Kim, “Rotation representations and their conversions,” IEEE Access,

vol. 11, pp. 6682–6699, 2023.

[20] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from er-

ror visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600–612, 2004.

[21] “scipy.interpolate.UnivariateSpline,” https://docs.scipy.org/doc/scipy/

reference/generated/scipy.interpolate.UnivariateSpline.html, Accessed: 27 September

2024.

61

https://www.sciencedirect.com/science/article/pii/S0143816623005420
https://www.sciencedirect.com/science/article/pii/S0143816623005420
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html

	Approval Page
	Ratification Page
	Statement of Authenticity
	Statement of Approval for Publication of Scientific Work for Academic Purposes
	Table of Contents
	List of Figures
	Listing
	List of Abbreviations
	Preface
	Abstract
	Introduction
	Background
	Problem Formulation
	Research Objectives
	Research Benefits
	Scope and Limitations
	Writing Systematics

	Literature Review
	Previous Research
	Using Multiple Cameras
	Using Inertial Sensor Data and ConvNets
	Using Inertial Sensor Data for Non-Blind Deconvolution

	Theoretical Framework
	Convolution
	Deconvolution
	Camera Movement and Spatial Variance
	Inertial Sensors Data
	Homography
	Spline Interpolation
	Structural Similarity Index (SSIM) for Image Similarity Measurement

	Methodology
	Tools and Resources
	General Overview
	Implementation
	Processing Raw Inertial Sensor Data
	Generating Point Spread Functions
	Non-Blind Deconvolution

	Testing Scenario

	Results and Discussion
	Methodology Implementation
	Inertial Sensor Data Collection
	Applying Homography to Estimate Point Movement
	Generating Cartesian-Represented Point Spread Functions
	Converting Cartesian-Represented Point Spread Functions into their Matrix Representations
	Realistic Modeling of Motion-Blurred Images
	Removing Motion Blur from Images

	Results
	PSF Model Accuracy
	Deblurring Results with Increasingly Noisy PSF
	Deconvolution Results with Spatially-Variant PSFs

	Discussion

	Conclusion and Recommendations
	Conclusion
	Recommendations

	References

