POINT SPREAD FUNCTION ESTIMATION MODELING AND
NON-BLIND DECONVOLUTION OF PHOTOS WITH
SPATIALLY-VARIANT MOTION BLUR THROUGH INERTIAL

SENSOR DATA

THESIS

Submitted to fulfill one of the requirements
for a Sarjana Komputer degree

from the Informatics Study Program

Compiled by:

Ghazali Ahlam Jazali

Student Identification Number: 215314191

FACULTY OF SCIENCE AND TECHNOLOGY
SANATA DHARMA UNIVERSITY
YOGYAKARTA

2025

PEMODELAN ESTIMASI POINT SPREAD FUNCTION DAN
NON-BLIND DECONVOLUTION CITRA DENGAN BURAM
GERAKAN YANG BERVARIASI SECARA SPASIAL

BERDASARKAN DATA SENSOR GERAK

SKRIPSI

Diajukan untuk memenuhi salah satu syarat
memperoleh gelar Sarjana Komputer

Program Studi Informatika

Disusun oleh:

Ghazali Ahlam Jazali

NIM: 215314191

FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA

2025

THESIS

POINT SPREAD FUNCTION ESTIMATION MODELING AND NON-BLIND
DECONVOLUTION OF PHOTOS WITH SPATIALLY-VARIANT MOTION BLUR
THROUGH INERTIAL SENSOR DATA

Written and prepared by:

Ghazali Ahlam Jazali
Student Identification Number: 215314191

24 January 2025

POINT SPREAD FUNCTION ESTIMATION MODELING AND NON-BLIND

DECONVOLUTION OF PHOTOS WITH SPATIALLY-VARIANT MOTION BLUR

POSITION

Chairman (and
member)

Secretary (and
member)

Member

THROUGH INERTIAL SENSOR DATA
THESIS

Written and prepared by:
Ghazali Ahlam Jazali
Student Identification Number: 215314191

EXAMINING'BOARD STRUCTURE

FULL NAME ’ SIGNATUR}E
Dr.Ir. Ridowati Gunawan, S.Kom., M.T;

Dr. Sri Hartati Wijono S.Si., M.Kom.

Drs. Hari Suparwito, S.J., M.App.L.T.

Yogyakarta, 24 January 2025
Faculty of Science and Technology

Sanata Dharma University

il

STATEMENT OF AUTHENTICITY

I declare that this thesis does not contain the work or parts of the work of others, except
those that have been mentioned in quotations and bibliography by following the provisions
as befits scientific work.

If in the future there are indications of plagiarism in this manuscript, I am willing to bear

all sanctions in accordance with applicable laws and regulations.

Yogyakarta, 19 December 2024

Weriter,

Ghazali Ahlam Jazali

il

STATEMENT OF APPROVAL FOR PUBLICATION OF SCIENTIFIC

WORK FOR ACADEMIC PURPOSES

The undersigned, a student of Sanata Dharma University:

Name . Ghazali Ahlam Jazali
Student Identification Number : 215314191

For the development of science, I give to the Sanata Dharma University Library my scientific

work entitled:

“Point Spread Function Estimation Modeling and Non-Blind Deconvolution of Photos

with Spatially-Variant Motion Blur through Inertial Sensor Data”

along with the necessary equipment (if any). I hereby grant the Sanata Dharma Univer-
sity Library the right to store, transfer in the form of other media, process in the form of
databases, distribute in a limited manner, and publish it on the internet or other media for
academic purposes without the need to ask permission from me or give royalties to me as

long as I keep my name as the author.

Thus I make this statement truthfully.

Written in Yogyakarta

on the date: 24 January 2025

Writer,

Ghazali Ahlam Jazali

v

CONTENTS

Approval Page i
Ratification Page ii
Statement of Authenticity iii

Statement of Approval for Publication of Scientific Work for Academic Purposes iv

Table of Contents v
List of Figures viii
Listing X
List of Abbreviations Xi
Preface xii
Abstract xiii
Introduction 1

1.1 Background 1

1.2 Problem Formulation 2

1.3 Research Objectives i 3

1.4 ResearchBenefits 4

1.5 Scope and Limitationso 4

1.6 Writing Systematics e 5
Literature Review 7

2.1 PreviousResearch. 7
2.1.1 Using Multiple Cameras 7

2.1.2 Using Inertial Sensor Data and ConvNets 8

2.1.3 Using Inertial Sensor Data for Non-Blind Deconvolution 9

22

Theoretical Framework 10
221 Convolution. L 10
2.22 Deconvolution 12
2.2.3 Camera Movement and Spatial Variance 15
2.2.4 Inertial SensorsData 16
2.2.5 Homography 17
2.2.6 Spline Interpolation 19

2.2.77 Structural Similarity Index (SSIM) for Image Similarity Measurement 19

Methodology 21
3.1 Toolsand Resources 21
32 General Overview e 21
3.3 Implementation L L e 22
3.3.1 Processing Raw Inertial Sensor Data 22
3.3.2 Generating Point Spread Functions 23
3.3.3 Non-Blind Deconvolution 30
34 Testing Scenario e 31
Results and Discussion 32
4.1 Methodology Implementation 32
4.1.1 [Inertial Sensor Data Collection 32
4.1.2 Applying Homography to Estimate Point Movement 35
4.1.3 Generating Cartesian-Represented Point Spread Functions 37

4.2

4.1.4 Converting Cartesian-Represented Point Spread Functions into their

Matrix Representations 42
4.1.5 Realistic Modeling of Motion-Blurred Images 45
4.1.6 Removing Motion Blur fromImages 47
Results. o . 50
4.2.1 PSFModel Accuracy 50
4.2.2 Deblurring Results with Increasingly Noisy PSF 51

vi

4.2.3 Deconvolution Results with Spatially-Variant PSFs 54

4.3 DISCUSSION o o o e 55
Conclusion and Recommendations 57
5.1 Conclusion e 57
5.2 RecommendationS. 57
References 59

vii

[B S B\

10
11
12
13
14

15
16

17

18

19

20

LIST OF FIGURES

Effects of convolution with a 15 x 15 Gaussian and linear (top right to bottom
left) motion blur kernels (PSF).,
PSF field produced by translational movements on the x, y, and 2 axes. . . .
PSF field produced by rotational movements on the z, ¢, and z axes.
Rotational movement, the velocity of which is captured by the gyroscope. .
Translational movement, the acceleration of which is captured by the ac-
celerometer.
A diagram showing the basic outline of the proposed software pipeline.

A visualization of how Algorithm 2 works.
Gyroscope data spline and its first-order antiderivative.

Linear accelerometer data spline and its second-order antiderivative.

Cartesian-Represented PSF plotted in 3-dimensional space, with z axis as time.

Cartesian-Represented PSF plotted in 2-dimensional space, omitting the z. .
Discrete PSF plotted as an image, where black means zero values.
Convolving an image and deconvolving it with its true PSF (example 1). . .

Convolving an image and deconvolving it with a noisy estimate PSF (exam-

Convolving an image and deconvolving it with its true PSF (example 2). . .

Convolving an image and deconvolving it with a noisy estimate PSF (exam-

Sample 1 illustrating the similarity between model PSFs and “real” PSFs.
Sample 2 illustrating the similarity between model PSFs and “real” PSFs.
Difference in deconvolution results using a true PSF and a noisy PSF with a
noise factor fixed at 0.01 seconds.
Difference in deconvolution results using a true PSF and a noisy PSF with a

noise factor fixed at 0.025seconds.

viii

12
15
15
16

49
49

50

50

51

52

21

22

23

24

25
26

Difference in deconvolution results using a true PSF and a noisy PSF with a
noise factor fixed at 0.05seconds.
Difference in deconvolution results using a true PSF and a noisy PSF with a
noise factor fixed at 0.075seconds.
Difference in deconvolution results using a true PSF and a noisy PSF with a
noise factor fixed at 0.5 seconds.
The original image before a spatially-variant motion blur degradation.

The spatially-variant motion-blurred image.

The result of the spatially-variant deconvolution.

iX

53

53

54
54
54
55

[\

SN n B~ W

10
11
12
13
14
15

LISTINGS

Using the scipy.interpolate.UnivariateSplineclass 32
Obtaining the first-order antiderivative of the gyroscope data 33
Obtaining the second-order antiderivative of the accelerometer data 33
Function to extract a translation vector given ¢ (relative from ¢5) 35
Function to evaluate UnivariateSpline objectsatt 35
Function to construct the rotation matrix 35

Function to combine the computed rotation matrix and translation vector to
generate a homography matrix 36

An Interval helper class to represent an interval cut from the inertial sensor

data 37
Function to generate the continuous PSF 38
An example usage of the generate_psf () function 40
Python implementation of Algorithm2 42
Function to apply Algorithm 2 to continuous PSFs 43
Convolving an RGB image againstaPSF 46
Adding additive Gaussian noise to the motion-blurred image 46

Using the unsupervised version of the Wiener-Hunt deconvolution algorithm 47

LIST OF ABBREVIATIONS

PSF : Point Spread Function; synonymous with “kernel”.
ConvNets : Convolutional Neural Networks
ISO : International Organization for Standardization; in photogra-

phy, the term refers to the (tunable) sensitivity of a camera’s
image sensor to light.

xi

PREFACE

For a long time, I have always found the problem of non-blind image deblurring—which
is the topic of this research—as something interesting. However, it was not until I studied
as an undergraduate exchange student at the University of Pennsylvania that the research
presented in this thesis first came into being. It started as a topic that I came up with for
the final project of CIS 5810: Computer Vision & Computational Photography. Because of
that, I would like to extend my gratitude to Professor Jianbo Shi for encouraging me to dive
into this subdiscipline of computer vision and for providing me with guidance. Although
challenging, I enjoyed every minute of the studying that culminated in this thesis.

I also would like to express my gratitude toward my thesis advisor, Drs. Hari Suparwito,
S.J., M.App.L.T. This thesis would not be what it is today were it not for the advice and
instructions he provided. Moreover, the help provided by Dr. Sri Hartati Wijono S.Si.,
M.Kom as well as Dr. Ir. Ridowati Gunawan, S.Kom., M. T. during the proposal-stage of this
research was highly invaluable to its development.

Finally, I would like to acknowledge the unwavering support of my family and friends,
whose encouragement and belief in my abilities have kept me motivated throughout this
journey.

I sincerely hope that the work presented in this thesis will add to the growing body of
knowledge in the field of computer vision and push for more research in non-blind image

deblurring.

Yogyakarta, 19 December 2024

Weriter,

Ghazali Ahlam Jazali

xii

Abstract

Despite the growth in image sensor technology, key limitations remain. Modern image
sensors in smartphones, due to their smaller size—relative to their DSLR counterparts—
often have to balance between SO value and shutter speed. When the value of the for-
mer is raised, the sensor will allow more light in but the resulting photos will gain noise
due to the increased sensitivity. When the latter is lowered, more light can be gained
without trading it off with noise; although, motion blur will be easier to unintentionally
introduce to the image. This research offers a way to take photographs without having
to painstakingly optimize for the least amount of noise and motion blur. By initially
allowing motion blur to be present, the camera sensor can then be set towards lowering
its ISO value to suppress noise. The motion blur in the resulting image can then be
removed through non-blind deconvolution based on a known (estimated) kernel. The
kernel (or PSF) that is used for the deconvolution process is obtained through a mod-
eling technique that utilizes data from inertial sensors. To conduct the modeling, this
research presents a new algorithm to generate spatially-variant PSFs given the appropri-
ate inertial sensors data. The algorithm fits into an end-to-end image deblurring pipeline.
Additionally, unlike most computer vision literature dealing with motion blur removal,
this research provides a comprehensive but concise guide on the implementation of the

said PSF modeling technique.

Keywords. Non-blind deconvolution, motion blur, computer vision, computational photography, ISO,

shutter speed

xiii

CHAPTER
INTRODUCTION

1.1 Background

Over the course of decades, the quality of phone cameras have improved dramatically. How-
ever, because they are limited by their relatively smaller sensor size—compared to DSLR
cameras—the quality of the images produced by them degrades once the shooting condi-
tion is less-than-ideal [1]. In low-light environments, phone cameras will attempt to balance
between the shutter speed (lowered) and the sensor’s ISO value! (raised) in order to com-
pensate for lack of sufficient lighting. Letting the shutter open for a longer period of time
will allow for more light enter. The main trade-off to this, however, is the increased likeli-
hood of motion blur being introduced to the final image; since it is highly probable that the
photographer moved during the time window where the sensor is exposed to light>. Multiple
research have attempted to address this problem, mainly by defining a system where mo-
tion blurs can initially be tolerated—with the premise that it would be removed later during
post-processing.

A classic example of such research, [2], described the use of a secondary camera to work
in tandem with a primary camera. The secondary camera captures video starting from the ex-
act moment the primary camera starts capturing image—up to the point when it stops doing
so. The frames of the video effectively captures the magnitude and direction of the primary
camera’s sensor displacement during image capturing. According to its testing results, this
approach yields a high degree of accuracy given some conditions. However, it operates un-
der the assumption that the motion blur in an image as a whole is spatially-invariant, i.e., can
be described by a single point spread function. Realistically, however, the cause of motion
blurs is a combination of translation and rotation of the sensor in three-dimensional space.

This means that a degree of spatial variance will ultimately be present.

'The ISO value indicates how sensitive the camera sensor is to light. A sensor set to a higher ISO value will
generate more luminance and color noise on the image it takes.

’In addition to the photographer’s movement during shutter exposure, motion blur may also be caused by
the movement of the subject.

Another way to gain knowledge on the spatial displacement of the sensor during the time
when it was exposed to light can be done through the recording device’s inertial sensor. The
one type of standard inertial sensor that is embedded in most modern smartphones is the
gyroscope. Gyroscopes have the capability to detect angular velocity. Through the use of
integration, the gyroscope can effectively give readings on the camera sensor’s rotational
movement on three-dimensional space—that is, all x, y, and z axes. One approach that took
advantage of inertial sensor measurements is [3]: by using a convolutional neural network.

Through the implementation of an encoder-decoder architecture, the authors of the paper
demonstrated the viability of their model in eliminating a high degree of motion blur. How-
ever, due to the nature of convolutional neural networks, artistic types of blurs that may be
desirable to retain (e.g., shallow depth-of-field), may be falsely considered as motion blur
and subsequently deblurred. In addition to that, the motion blur model that was used had to
be simplified into a linear approximation so that it can be concatenated to the back of the im-
age tensor as two matrix representation of the model (“blur fields” in the = and y directions).
Moreover, the method by [3] is unable to detect translational movement due to the lack of
accelerometer data—although, it has been noted throughout deconvolution literature that the
effect of translational displacement on motion blur is limited for certain situations (and adds
unnecessary complexity to the motion blur model).

This research aims to create a non-blind image deconvolution pipeline that considers
both the motion blur spatial variance from translation and rotation. The pipeline consists
of two main sections: point spread function (PSF) estimation and non-blind deconvolution.
Additionally, as an integral part of the pipeline, this research presents a new algorithm that

is capable of producing realistic PSFs through inertial sensor data.

1.2 Problem Formulation

This research attempts to tackle the problem of motion deblurring by proposing a photo
processing software pipeline. The pipeline takes an image degraded by natural motion blur

along with the motion data of the device during the time the photograph was taken. Inside

the pipeline, a realistic model of the motion blur is inferenced using the provided inertial
sensor data to produce a PSF matrix; which in the image degradation model detailed in Eq.
2, substitutes the kernel k. Motion blur is then removed from the image through non-blind
deconvolution, which takes in a blurry image and an estimation of its corresponding PSF.
The output of the pipeline is the latent image.

As it is computationally-efficient, the pipeline will be able to run on mobile devices. The
pipeline also allow users to capture even higher quality images than what their camera nor-
mally allows. This is because users will no longer be constrained to shorter shutter speeds; a
longer shutter speed will allow more light to be captured by the sensor, hence details within
the image—which would otherwise be lost to noise due to high ISO—will show up more
pronounced. Although non-blind deconvolution tend to leave artifacts—the degree of which
depends on the PSF estimation quality—degradation from them tend to not obscure fine de-
tails as much as image noise (and motion blur) do. This research trades-off noise degradation

in favor of deconvolution artifacts because of its tendency.

1.3 Research Objectives

The goal of this research is summarized by the following:

1. To create an end-to-end image motion deblurring pipeline, as described in the problem

formulation;
2. to describe a novel algorithm that converts inertial sensor data to PSFs;

3. to provide a comprehensive reference for obtaining realistic PSF models through the

use of inertial sensor data to the computer vision literature;

4. to provide quantitative measurements and qualitative comments of the quality of im-
ages deblurred through non-blind deconvolution and the quality’s relationships to other

parameters, such as the attributes of the PSF.

1.4 Research Benefits

An extensive number of research have been written on image deblurring—ranging from the
direct use of non-blind deconvolution algorithms to approaches such as ConvNets. However,
to date, there has not been a comprehensive and concise reference, gathered under a single
paper, on the use of inertial sensor data to model PSFs along with the implementation of the
modeling. This research contributes to the deconvolution literature by providing a framework
to convert inertial sensor data into realistic discrete PSFs.

In addition to providing benefits for public use (i.e., for smartphone photography), under
the assumption that its use grows popular enough, the pipeline could potentially set stan-
dards for photograph metadata. If the pipeline is made easily accessible for any developers
to implement into their products, camera manufacturers will be more inclined to include
inertial sensor data accompanied by accurate timestamps (down to nanoseconds) as part of
their device’s default photograph metadata. The adoption of such standard would mean that
most photographs taken will be accompanied by inertial sensor data. This means that if any
of those photographs turned out to be affected by motion blur, their clear version can be
retrieved regardless of the device used to capture them. This can be beneficial for the field
of computer vision. For instance, in training a ConvNets for image recognition, blurry pho-
tographs in the datasets that would have otherwise been discarded during the preprocessing

stage can be kept and deblurred.

1.5 Scope and Limitations

Any motion blur that was not caused by the capturing camera sensor motion might negatively
affect the result of the image deblurring. For instance, if a car was passing through when an
input photograph was taken, the non-blind deconvolution algorithm applied on the image
might refine the initial estimation kernel based on motion blur that was produced by the
passing car instead of the motion blur caused by the camera’s movement. Because of that,
it is likely that the photo processing pipeline will perform worse on photos where objects

moves independently, especially if the objects’ movements are not parallel to the movement

of the camera sensor.

In addition, another one of the pipeline’s point of failure is the accuracy of readings from
the hardware involved (to a degree, this excludes the reading accuracy of the inertial sensor
data). For instance, the camera that captures the image needs to be calibrated with respect
to its focal length, optical center, and skew coefficient [4]. With a faulty calibration, the set
of point spread functions inferred from the inertial sensors may not match the actual motion
blur present in the image.

Due to the reasons iterated above, the pipeline operates under the following assumptions:

1. Objects within the captured images are stationary; the motion blur within the images

are purely caused by the sensor’s movement.

2. The calibration variables (e.g., the camera matrix, etc.) for the necessary hardware

components that the software pipeline operates on are accurately known.

1.6 Writing Systematics

This research proposal has been written in a way that assumes the reader’s basic knowledge
of computer vision techniques and familiarity to basic terminologies. However, more obscure
topics such as deconvolution will be preceded by short introductions.

Chapter 1 includes some background knowledge to give a motivation on the need to
solve motion deblurring—an ill-posed inverse problem in computer vision. It also gives
the problem formulation to define the questions that the research is aiming to answer. The
objectives and benefits of the research is later outlined to give a view on the final products
of the research and their expected impacts on its target disciplines respectively. This chapter
defines the scope and limitations of the research to set some boundaries on what it will and
will not explore.

Chapter 2 contains a review on approaches commonly used to address the problem of
image deblurring, as well as methods that are less common but are noteworthy. This chapter
also includes a theoretical framework that are critical to understanding the motion deblurring

technique presented by this reasearch.

Chapter 3 outlines the tools and resources that this research intends to use to construct the
product. It also gives a general overview on how the research is to be carried out, as well as
details on its implementation and testing scenario. Chapter 4 Discusses the the methodology

implementation as well as its result, and Chapter 5 concludes the research.

CHAPTER 11
LITERATURE REVIEW

2.1 Previous Research

Motion deblurring is an ill-posed problem. Over the past couple of years, great advances
have been made in an attempt to resolve it, by attempting to find ways to constrain the

solution space presented by this problem.

2.1.1 Using Multiple Cameras

A method of adding a secondary, high—temporal resolution camera to capture video that can
be decoded into motion data was proposed by [2]. To ensure that the video from this camera
can accurately represent the spatial displacement of the sensor in the primary camera, three
of prototypes were proposed—each of which has their own disadvantages. Prototype (a)
places the secondary camera next to the primary one—where each camera are independent
of each other, in a sense that they have their own lenses and sensors. There are a number
of problems with prototype (a), namely the fact that the images produced by the two has to
be identical in all aspects other than resolution, color channels, and noise. This condition is
particularly difficult to satisfy, given the different focal length and size of both the lenses and
the sensors. Prototype (b) improves upon these issues by using only one lens but still with
two separate lenses. Using a beam splitter, the images produced by the sensor can have an
identical perspective because they came from the same lens. Prototype (c) takes this further
by combining the two devices into a system of one lens and a binned CMOS sensor.

The motion data provided by the secondary camera can then be converted into a point
spread function (PSF) that describes the motion blur applied to the latent image. In order
to do so, each frame of the video is treated as discrete samples of the sensor’s displacement
over the period of time when it was exposed to light. That set of discrete samples can be
made into a continuous PSF through the use of spline interpolation. Once the PSF is found,

a non-blind deconvolution operation can be applied in order to extract the latent image. In

this particular case, the iterative Richardson-Lucy algorithm is used due to its convenient
property of never producing negative value outputs, which, according to the authors, “make
better physical sense than linear methods.”

This accuracy of this method is in the subpixels level, given that the secondary camera
has a high enough sensor resolution and a low enough luminance noise standard deviation.
However, due to the assumption that a single PSF can describe the motion blur of the whole
image, this method does not address the possibility of a spatially-variant motion blur within

the image—where each object within the picture may exhibit a different PSF.

2.1.2 Using Inertial Sensor Data and ConvNets

On the other hand, [3] utilized a encoder-decoder—structured convolutional neural network
trained using a set of 100,000 (1) degraded images, (2) their motion data obtained from
the capturing device’s gyroscope, and (3) ground truth images that describes how the latent
images should look like. In order for the motion data to be fed to the ConvNets, they first
need to be converted into a form that can be concatenated with the image tensor. The authors
do this by converting the angular displacement on all x, y, and z axes from the gyroscope
data into what they refer to as “blur fields” (B). The blur field consists of two 2-dimensional
matrices that are of the same H x W size as the motion-blurred image (excluding color
channels). The each element in the B, and B, blur fields are the value of the blur vector in
the x and y axes; hence B as a whole represent the PSFs at every pixel of the image. These
PSFs are assumed to be linear in nature in order to represent each of them as a vector of two
elements [z, y|.

As indicated by the description of blur fields generation above, [3]’s method does not
directly deal with PSFs, and the non-blind deconvolution operations are done within the
decoder part of the ConvNets. This approach simplifies the pipeline of image deblurring,
albeit with a number of trade-offs, including the granularity of control in crafting the pipeline
itself.

The nature of the blur fields generation described in the paper only takes into account

the spatial variance of the motion blur with respect to the motion data provided by the

gyroscope—it does not directly consider the distance of objects within the images relative
to the camera sensor. Which means that, during training, while object distances may be
picked up by the convolutional layers as features, and their relationships with the provided
blur fields may be determined by other parts of the hidden layers—how well the resulting
model performs depends almost solely on the quality of the training dataset and how well
it represents real-world conditions. With a two-step process such as with [2], certain pre-
processing operations can be applied on—for instance—converting discrete motion samples
into a continuous PSF if it was found that it did not perform well enough when deconvolved
against degraded images. In addition, there is no way guarantee that the model deconvolves
motion blurs only. As stated by [5], the network’s training may not be sufficient to enable
the resulting model to distinguish between degradative and intentional (e.g., shallow depth

of field) blurs every time.

2.1.3 Using Inertial Sensor Data for Non-Blind Deconvolution

Instead of letting a ConvNets to conduct the deconvolution—a class of solution called blind
deconvolution—[6] proposed a two-step method to motion deblurring. This is done by first
estimating the motion blur kernel associated with the input image. If a blur kernel is known,
then the problem—the restoration of the latent image—becomes solvable through non-blind
deconvolution. The authors employed a non-blind deconvolution method described by [7],
which is an improved version of the Richardson-Lucy non-blind deconvolution algorithm
that prevents ringing artifacts that are especially prevalent in deconvolved low-light photos
featuring clipped® highlights.

The paper by [6] also pointed out several area where the innacuracies might appear in
kernel estimation, including the rolling shutter effect, the effects of gravity on sensor read-
ings, as well as the possibility that the rotation center of the motion is not the sensor itself.
For these described problems, [6] gave a detailed analysis and proposed an online calibra-

tion method that utilizes light streaks and autocorrelation map—based methods in refining the

3In photography, clipped highlights refer to areas within a photo that shows up as pure white because of
luminance exceeding the camera sensor’s dynamic range.

initial motion sensor—provided kernel estimations.

2.2 Theoretical Framework
2.2.1 Convolution

In computer vision, convolution refers to 2-dimensional discrete convolution. Convolution is
an operation that can be used to mathematically express many forms of image degradation.

An image that has been artificially blurred, for instance, can be modeled the following way:
B=I®k ()

where I, ®, k, and B respectively denotes the latent image, the convolution operator, the
blur kernel* to which I is convolved with, and the blurred image. However, in real-world
circumstances, there is often the presence of additive noise [8]. Therefore, it is more common

in computer vision literature to model motion blur as
B=1®k+e¢ 2)

where ¢, according to [9], denotes a “zero-mean, identically- and independently-distributed
noise term at every pixel.”

Eq. 3 breaks down how the convolution operator ® in Eq. 2 works:

M N
By = |33 1(i—m,j —n)k(m,n)| +2; 3
m=0 n=0

For Eq. 1 and Eq. 2, there are many possible blur kernels that can substituted into k. The
effects of box blur is well known: it effectively reduces the inter-element differences within
a certion region of a matrix—a “fuzzy” operator. A box blur kernel is one in which all its
elements are equal to one another. However, for the resulting image to retain the “brightness”

of its original counterpart, the elements within the kernel must add up to one. Meaning that

“Note that in the field of computer vision—especially in the context of deconvolution—the term “kernel” is
often used interchangeably with “point spread function” (PSF) and “impulse response function.”

10

a 3 x 3 box blur kernel will have % spread over uniformly throughout the matrix:

. 1 11
E=—-1111 4
9 “)
111
Another kernel that is often used apply artistic blur to images is the Gaussian kernel’.
. 1 21
k=— 5
612 42 (&)
1 21

The use of convolution is not limited to blurs such as the ones described above. To

emulate motion blur, £ from Eq. 2 can be substituted using kernels such as

(6)

Wl
= o O
o = O
o O =

The resulting output B will exhibit a diagonal motion blur—as if the photographer moved
the camera from the bottom left to the top right when capturing the image.

Intuitively, kernels in convolution can be thought of as a description of how every single
point within an image is going to be “spread out,” hence the alternative term “point spread
function” (PSF). In other words, according to [10], it is a “ system response to a point source
placed at the origin of the image.” In order for the convolved image to retain the original
image’s luminosity, the cumulative value of the elements inside the kernels must add up to
one.

The images in Figure 1 illustrates how kernels like Eq. 5 and Eq. 6 affects an image

through convolution:

>Looking through the values within the matrix k in Eq. 5, one should notice that the Gaussian kernel (3 x 3
in size) is based on the Gaussian distribution. Hence, the kernel is a discrete approximation of the actual
continuous distribution.

11

Original Image Convolved with (i) Convolved with (ii)

f

Figure 1. Effects of convolution with a 15 x 15 Gaussian and linear (top right to bottom left) motion blur
kernels (PSF).

2.2.2 Deconvolution

The inverse to the convolution operation is known as deconvolution, as reported by [11]. To
a certain degree of accuracy, deconvolution makes it possible to recover an original image /
from a degraded one B (as modeled in Eq. 2). This reversion process, given a known PSF—
or at least a known estimate of it—is referred to as non-blind deconvolution. Conversely,
when no knowledge of the PSF is provided, the process is known as blind deconvolution
[12].
The idea behind classical non-blind deconvolution lies in the convolution theorem, which
is discussed by [13]:
fx) ©9(x) & F(w)G(w) ©)

The theorem states that the convolution of two functions in the time domain is equivalent to
the product of their respective Fourier transforms® in the frequency domain. The terms in

Eq. 1 may be expressed as functions

h(x) = (f © g)(x) ®)

The Fourier transforms of functions are denoted by capital letters.

12

where f(x), g(x), and h(x) denotes the latent image, the PSF, and degraded image respec-
tively; and x = (z,y). With Eq. 8, deconvolution—that is, finding the unknown term f(x)
given a known g(x)—can be done by first computing the discrete Fourier transform of each

known terms, which can be symbolically expressed as F{e}:

H(w) = F{h(x)} ©)

G(w) = Flg(x)} (10)

Taking note of Eq. 7, the resulting Fourier transforms of the terms can then be arranged the
following way:

H(w) = F(w)G(w) (11)
Here, we also denote the Fourier transform of the unknown term f(x) as F'(w) for conve-

nience. To find F(w), Eq. 11 can be rearranged as

Flw) = Glw) (12)

Once F(w) is calculated, its inverse Fourier transform (denoted as F~'{e}) can be computed
to find the original image f(x):

f(x)=F HF(w)} (13)

However, as mentioned previously, it is more accurate to model natural motion blur with

an additive noise term

h(x) = (f @ 9)(%) + ¥ (x) (14)

Because of the linearity property of Fourier transforms (while Eq. 7 states that convolution
in the time domain is multiplication in the frequency domain), addition in the time domain is

equivalent to addition in the frequency domain. When the noise term (x) is involved, Eq.

13

11 becomes

H(w) = F(w)G(w) + ¥(w) (15)
Flw) = H(“’é(;;”“’) (16)

Eq. 16 above shows that to find F'(w)—and subsequently f(x)—in addition to g(x) and
h(x), the noise term 1(x) would also need to be known. In natural images, knowledge of
additive noise is highly limited. Granted, a perfect knowledge of g(x), the PSF, can also be
difficult to obtain—although to a much lesser extent’.

Moreover, despite its relative simplicity, deconvolution using division in the Fourier do-
main (Eq. 16), there is a well-known tendency of noise amplification—to the point where
the original image becomes deteriorated to an unrecognizable extent rather than improved.
According to [14], the division in Eq. 16 is the main cause of the noise amplification: the
division of a small complex number by another small complex number will result in the
enlargement of the term F'(w). In addition, due to its nature of being a low-pass filter, the
Fourier transform G(w) may be zero for high frequency. Because of its position in the de-
nominator of Eq. 16, a zero value for G(w) in an expression containing a division-by-zero.

Wiener deconvolution is an algorithm that seeks to improve Eq. 12:

H(w) 1
Fl(w) =] (17)
G |9 (w)[2/|F(w)]?
with I?E:’;E being the signal-to-noise ratio (SNR), which is easier to estimate in the sense that

being off, as suggested by Eq. 17, allows for the noise to be attenuated rather than amplified
(as the case with Eq. 12).

The authors of [15] further improves upon a more advanced variation of the Wiener
filter—the Wiener-Hunt deconvolution algorithm. Their paper detailed an unsupervised ver-
sion of the algorithm (it jointly estimates the hyperparameters alongside the PSF and the
image of interest). The posterior law is obtained through the Bayes rule. In the algorithm,

the mean of the posterior law is used as the estimate, which is computed using Monte-Carlo

7especially with methods shown by [2], [7], and [9]

14

Markov chain algorithms.

2.2.3 Camera Movement and Spatial Variance

Images that are degraded by a single kernel are relatively easier to restore than ones that
have a spatially-variant set of kernels—that is, every pixel of the latent image may not be
convolved with the same kernel k; but rather a series of different kernels k1, ko, ks, . . ., ky,.
Unfortunately, this is often the case with naturally-degraded images—as opposed to images
that are deliberately degraded by convolving them with some arbitrary kernel.

Motion blurs are caused by translational and rotational movements of the sensor in three-
dimensional space. With translational movements, the spatial variance depends on the depth
of the objects within the image due to perspective distortion, especially in an image where
its objects are of a sufficiently different distance. Objects that sits closer to the camera will
create much more motion blur that the ones that are farther away. With rotational movements,
spatial variance depends on the difference between pixel positions. The pixel x = (1, 1) may
not be convolved with the same PSF as, say, x = (27, 103).

The diagrams in Figure 2 and 3 illustrates the different spatial variance® produced by

translational and rotational movements on all three axes.

/Z///--\\\
= /S 7/ 7/ + v N\

Figure 2. PSF field produced by translational movements on the z, y, and z axes.

Sl 1

Voo ~—————-—-- = o - - <<~
S R R R SR I P VAV EVEPEENENEN
Vo B [Vo
R T T N) (S Lo Co
[I N T R B B Co
T T T T T T O . 3 NN

‘Ge/llllt\\ - ——— === \X%}(NSNSy

Figure 3. PSF field produced by rotational movements on the z, y, and z axes.

8With translational movements, spatial variance additionally depends on the depth of the scene.

15

According to [16], for a given blur amount J, distance of the object from the camera
d, and focal length f, the amount of translation X and rotation # needed to cause to cause

motion blur at the size of § can be obtained through

X = éd (18)
6 — tan-! (%) (19)

With Eq. 18 and Eq. 19, we can infer the fact that it takes more translational displacement
than rotational displacement to create the same amount of motion blur, especially if the d is

sufficiently large.

2.2.4 Inertial Sensors Data

In most modern cameras, especially with smartphones camera, there are at least two inertial
sensors: the gyroscope and the accelerometer. The former captures the angular velocity of
the device on its x, y, and z axes at any given time. The latter captures the acceleration of
the device at those same three axes. Both sensors capture movements in a discrete fashion
with a specific sampling rate.

Figure 4 and 5 illustrates the kind of movements that can be recorded by a gyroscope and

an accelerometer respectively.

Ol el

Figure 4. Rotational movement, the velocity of which Figure 5. Translational movement, the acceleration of
is captured by the gyroscope. which is captured by the accelerometer.

!

)
!

Rotation Since the gyroscope captures the device’s angular velocity rather than displace-
ment, the data directly obtained from it must be integrated to find the device’s displacement.

Let 6(¢) be the angular displacement and «/(¢) be the angular velocity. The function 6(t) can

16

be found by
0(t) = /a(t) dt (20)

Since the 0(t) given by the gyroscope is discrete rather than continuous, Eq. 20 can be

rewritten into

0(t) = > alt)r 1)

vt

where 7 denotes the sampling interval. Eq. 21 is calculated for each z, y, and 2z axes of the
device. Alternatively, spline interpolation can be performed on the discrete gyroscope data
points to generate the polynomials representing the estimated continuous function. Due to

the nature of continuity, this approach allows for sampling at arbitrary values of t.

Translation The accelerometer of a device captures its acceleration on each of its z, v,
and z axes. Applying spline interpolation on the discrete accelerometer dataset allows for
the resulting continuous curve to have a twice-differentiability property, enabling for the

function’s second-order antiderivative to be found:

v(t) = /a(t) dt (22)

5translation(t) = /U(t) dt (23)

Here, v(t) and a(t) denotes the velocity and acceleration respectively. The translational dis-
placement is obtained through integrating the accelerometer spline twice. When the second-
order antiderivative is evaluated at ¢, the result, written as dyansation (¢), is the translation vector
itself (of size 3 x 1), which shows the amount of translational displacement that has occured

since .

2.2.5 Homography

The PSF can of a motion-blurred image can be obtained through the capturing device’s in-
ertial sensor data. The motion of every pixel in the image sensor can be modeled using

projective transformation, often referred to as homography in the computer vision litera-

17

ture. The following equation describes how the homography transformation matrix can be
obtained [17]:
H=KRK™! (24)

According to [18], the homography transformation “describes the relationship between the
real-world scene and the picture on the image plane of the camera”. Given a known rotation
matrix Ajopaion(6), translation vector dyansiation (f), distance d, and normal matrix of the scene

n=10,0,1", R in Eq. 24 becomes

6translation (t)nT

R(@, t) - Arotation(e) - d (25)
where A quion () is defined as
cos), —sinf, 0 cosf, 0 sinf,| |1 0 0
Aroation(0) = |sinf, cosf, 0 0 1 0 0 cosf, —sind,| (26)
0 0 1| |—sin6, 0 cosf,| |0 sinb, cosO,

The rotation matrix is a product of the three standard elemental rotation matrix in z, y, and

z, as seen in [19]. The matrix K, according to [16], is the internal calibration matrix

[s B
K=|0 f P, 27)
00 1

that is described by the manufacturer of the camera. Here, P, and P, denotes the principal
points (normally defined as the center of the image sensor) and s denotes the camera’s skew
parameter.

When the distance d is far enough that translation no longer produces a significant enough

motion blur, i.e., d is larger than the focal length f, R in Eq. 24 can be simplified into

H = KArotation(9>K71 (28)

18

2.2.6 Spline Interpolation

Spline interpolation is a method of constructing a smooth curve that passes through a given
set of data points. The most commonly used type of spline interpolation is the cubic spline
interpolation, where the curve is made up of piecewise cubic polynomials.

In a cubic spline interpolation, given a set of data points (g, yo), (1, Y1), - - -, (Tn,Yn), @
cubic polynomial S;(z) is constructed for each interval [x;, z;,1]. In doing so, the following

conditions must hold: (1) the resulting spline is continuous,
Si(z) =y, Vi=1{0,1,...,n—1}, (29)

and (2) a continuous first and a second derivatives exists for all points,

d d d2 42
Si(@i) = — St (i), Si(z;) = 2

€y) = g @7

Si—i-l(xi)? Vi = {07 17 sy 1}7 (30)

Additionally, for a natural cubic spline, the second derivatives at the endpoints are set to

ZEro:

4 So(ae) = 0 d—QS(a:)—O 31)
dl’o o\t0o) — Y, dx% 0\+0) — Y.

Each cubic spline S;(x) that sits between two points x; and x;,; is defined by the cubic

polynomial

SAZL‘) = CL,’(I’ — .TZ‘)S + bl(.T — in)z + Ci(ﬂf — l’l) + dl (32)

where a;, b;, ¢;, and d; are coefficients. To find these coefficients, in which there are 4n of

them, 4n equations needs to be set up and subsequently solved.

2.2.7 Structural Similarity Index (SSIM) for Image Similarity Measurement

First descibed by [20] in 2004, the Structural Similarity Index (SSIM) is a metric used to

measure the similarity between two images which, unlike traditional methods like Mean

19

Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR)—which focus on pixel-wise
differences, SSIM takes into account structural information, luminance, and contrast. This
image similarity measure provides a more perceptually relevant measure of image similarity—
as it was designed to better reflect human visual perception, which is more sensitive to struc-
tural patterns.

SSIM is based on three main factors, luminance, contrast, and structure: it measures
the degree of similarity between these three components for corresponding patches in two
images.

Given two images X and Y, SSIM can be defined as

(Qﬂxﬂy + Cl) (QO'XY + 02)
(1% +py +)0k + oy +)’

SSIM(X,Y) = (33)

where px and py denotes the mean pixel intensities of X and Y, 0% and o denotes the
variances of X and Y, and oxy is the covariance between X and Y. To prevent division-
by-zero or division by a very small quantity, two stabilizer variables ¢; = (k;L)? and ¢, =
(k;L)? are introduced. Here L is the dynamic range of the image values—which would be
255 for 8-bit images and 65,535 for 16-bit images (grayscale) and £ < 1 is a constant of

miniscule quantity.

20

CHAPTER III
METHODOLOGY

3.1 Tools and Resources

In obtaining the inertial sensor data, the hardware used is an Apple iPhone 13, which provides
all the inertial sensors needed to construct PSFs, i.e., a gyroscope, an accelerometer, and a
g-force sensor (used to determine the gravity vector from which the accelerometer data can
be subtracted to get linear acceleration). The software used to obtain the data is MATLAB®
Mobile, which is available on the device. MATLAB® Mobile allows for the logging of
inertial sensor data at a maximum frequency of 100 Hz.

The high-resolution images used to experiment with is obtained from the DIV2K dataset,
which provides a total of 1,200 high-resolution images to work with. Additionally, an Apple
iPhone 6 is used to capture samples of “real” PSFs to compare them with the PSF models
obtained through the PSF-generator algorithm presented in this research. The use of the
specific device is due to the lack of any optical and sensor-shift stabilization schemes in its
back camera, which could interfere with the resulting “real” PSFs.

The programming language of choice in this research is Python due to its ease of use
in defining and manipulating matrices—operations that are abundantly-done within this re-
search. All of the processing in this research is done on a remote Oracle® Cloud compute
unit with an Ampere A1 CPU, which is an ARM processor. The machine is configured to

have four OCPU” cores and 24 gigabytes of memory.

3.2 General Overview

The product of this research is a photo processing pipeline that takes two inputs:

1. The image degraded by natural motion blur, which may have spatially-variant PSFs.

9The term OCPU refers to the Oracle CPU, which is a unit of measurement specific to Oracle Cloud Infras-
tructure compute instances. According to oracle, a single OCPU is worth “at least two vCPUs.”

21

2. The data regarding the spatial displacement of the camera sensor during the time the
sensor was exposed to light. This data is recorded by the device’s inertial sensors
(see 2.2). The inertial sensor data, which includes the translational and rotational
displacement helps provide an accurate information to estimate the blurry image’s

PSE.

Within the pipeline, the inertial sensor data is used to model a set of PSFs for different
area of the degraded image by passing it into a PSF-generator algorithm. The said algorithm
consists of two phases: (1) converting the inertial sensor data into Cartesian-represented
PSFs and (2) converting the Cartesian-represented PSFs into their matrix representation.
The PSF is then passed as a parameter, alongside the degraded image, into the unsupervised
Wiener-Hunt non-blind deconvolution algorithm so that the latent image can be recovered
from the degraded image.

Figure 6 shows the overall outline of the proposed software pipeline.

3.3 Implementation

The point of deconvolution is described in Chapter 2.2.2: to recover the unknown latent
image f(x) given a degraded image h(x) and estimated PSF ¢(x) (see Eq. 8). The im-
plementation details below is additionally given the appropriate inertial sensor data to (1)
generate the PSFs, which is the term g(x) in Eq. 8 critical to finding f(x) if 4(x) is known.
After obtaining the PSFs, the Wiener-Hunt deconvolution algorithm is applied with h(x) and

g(x) as inputs in order to get f(x).

3.3.1 Processing Raw Inertial Sensor Data

The raw gyroscope, accelerometer, and g-force sensor data that was obtained needs to be
processed before it can be used to infer displacement. Linear acceleration is obtained by

subtracting the total acceleration data at each axis by the g-force data at each axis multiplied

22

by 9.80665 (recall that 1 g = 9.80665 m/s?) at any given time ¢:

Afinear (1) = Qorar () — 9.80665 g(t) (34)

Yy T

where alinear(t) = [@ﬁneaﬁ aﬁneaﬁ afineax]T’ atotal(t> = [ai)talv iotal s afotal]—r’ and g (t) = [gzv 9y 9=]

To make integrating more convenient, and to make evaluating the accelerometer data at
any ¢ value possible, the inertial sensor data points can be interpolated to produce polynomi-
als that estimates the continuous version of the motion data. Spline interpolation, as detailed
in Chapter 2.2.6 (see Eq. 32), can be used in order to ensure twice-differentiability, which is
a property that is needed in order to obtain translational displacement.

For the gyroscope data, the first-order antiderivative is the rotational displacement of the
capturing device at its x, y, and 2z axes. For the linear acceleration data, the second-order

antiderivative is the translational displacement of the device.

3.3.2 Generating Point Spread Functions

Given a linear accelerometer data and a gyroscope data that captures the movement of the
image sensor as it was exposed to light (the movement during integration creates motion
blur), this research presents a new algorithm to generate PSFs for every possible points within
the image frame. The basic outline of the algorithm (devoid of implmentation detail) is given

below in Algorithm 1.

23

Algorithm 1 The conversion of inertial sensor data into Point Spread Functions

A 4 A 4
Angular Linear
Velocity Acceleration

Data Data

Homography
Matrices

A

\ 4

Construction

§) Homography
Hf\) In lfgl.aph} ' (Projective)
atrices Transformation

| . Algorithm 2:
Cartesian oo
PSFs Pixelization
: Algorithm

Matrix

PSFs Stop

It is common in the image deconvolution literature to utilize inertial sensor data to con-
struct homography matrices (partly because it is intuitive to do so). However, as the use of
a two-phase PSFs construction—where the first phase creates Cartesian-represented PSFs,
represented as vector-valued functions (see Eq. 35), which is then further processed into
matrix-represented PSFs—as far as is known, has yet been discussed; their implementation

details will be discussed in the following paragraphs.

Constructing the Homography Matrix The homography matrix is defined by Eq. 25.
Before its construction, the translation vector and the rotation matrix needs to be obtained.
The translation vector is simply the vector that contains the values of the displacement of the
capturing device at x, y, and z. The rotation matrix, as instructed by Eq. 26, is a combination
of three 3 x 3 elemental transformation matrix (for 3-dimensional space): the rotation matrix

for the z axis, y axis, and 2 axis.

After obtaining the translation vector and rotation matrix, the value of the intrinsic matrix
is also needed. The matrix accepts the focal lengths in unit of pixels. The unit conversion
requires knowledge on the size of the pixels in millimeters. In the case of the iPhone 13, it is
0.0017 for the wide angle camera. The principal points, on the other hand, is normally put in
as the center of the image sensor. However, in the case where the gyroscope is away from the
center of the sensor, the principal points can be moved towards the location of that sensor—
away from the image frame. This is an ideal calibration model if the capturing device that is
used does not have its motion sensors aligned to the center of the camera sensor.

The final homography matrix can then be calculated using the formula presented in Eq.

24.

Generating the Cartesian Representation of the Point Spread Functions Now that the
homography matrix has been obtained, determining the point-spread in every part of the
image is convenient. It can be done simply by taking the homography matrix and the de-
sired homogeneous coordinate that falls within the original image frame (before the motion

T . .
] coordinate into a homo-

began) and multiply them together. To convert an ordinary [z, y
geneous coordinate, augment the value 1 as the third value of that column vector, turning
it into [z, v, 1]T. After the transformation, the resulting homogeneous coordinate must be
normalized back by dividing every element with whatever the augmented element became
after the projective transformation (i.e., if the augmented value yielded a value of 6.3 after
the transformation, the each member of the vector needs to be divided by 6.3). After the di-
vision, the value of that augmented value would return to one. At this point, that augmented
value can be removed again.

The idea behind generating a continuous PSF is by computing the projective transfor-
mation of the desired points within the image at multiple times until the end of the desired
movement interval. Essentially, this is a sampling of the projective transformations in some
desired interval. The smoothness of the Cartesian-represented PSF depends on the how many

samples are taken within an interval.

Since the existance of rotational movements introduces spatial variance in PSFs, the

25

transformations can be done for evenly-sized sections of the image.
The Cartesian representation of the PSF is a vector-valued function (which is a function
where the domain is a real number while the range is a vector) that receives ¢ (represented as

z) as input and outputs a 2 x 1 vector [z, y]T'

7(z) = (f(2),9(2),2), (35)

where f(z) and g(z) are the component functions showing the x- and y-based displacement

of the point of interest during the homography transformation.

Generating the Matrix Representation of the Point Spread Functions This research
introduces a simple algorithm that converts the Cartesian representation of a PSF into its
matrix representation. Given a Cartesian plane with each of its 1 x 1 grid representing a
single pixel, this algorithm decides the actual pixel values in the matrix representation of the
PSF based on where coordinate falls on the PSF’s Cartesian plane representation.

More formally, given a point (z’,%’) in a Cartesian plane, its point of origin (the pixel
center point (x,y) that (z’, ') sits closest to), and the pixel size 1 x 1; where that continuous
point will lie can be computed if the Cartesian plane is discretized into an H x W “image,”

(where each pixel is of size 1 x 1), by Algorithm 2:

26

Algorithm 2 The conversion of a Cartesian plane coordinate into pixel values

1. Determine the displacement (Ax, Ay) of the point (z’,y") from the point of origin
(z, y).

2. Based on the sign of (Ax, Ay), either negative or positive, determine the direction of
the neighboring pixels (i.e., north, northeast, east, southeast, south, southwest, west,
and northwest) that are “encroached” by the psuedo-pixel (the pixel projected by the
coordinate; that is, if the coordinate lies in the point of origin, the psuedo-pixel aligns
perfectly with the actual pixel) of (2, y/).

3. For each affected neighboring pixels, determine the area that the psuedo-pixel of
(2',y") encroaches by the following equation:

|Az| (1 —|Ay|), encroached pixel is in the west
or east of the origin pixel;

Acncroached = & |Ay| (1 —|Az|), encroached pixel is in the north (36)
or south of the origin pixel
|Az||Az|, otherwise

Let K be the matrix representation of the PSF:

K=> a(fz)), (37)

VzeZ

where 7(z) denotes the vector-valued function defined in Eq. 35 that is the Cartesian-
represented PSE. The values of the matrix-represented PSF, owing to the natural requirement

of post-convolution brightness retention, has to be normalized so that the matrix elements

sum up to 1,
~ K
K=5——, (38)
1TK1
where 1 is a column vector of ones ,1,..., 1]T. The expression 1T K 1 denotes the sum of

NxM

the elements of K. Here, the function ® : R? — {0, 1} is defined as

27

Image Capturing

A 4

Inertial Sensor

Data Collection

Angular
Velocity
Data

A 4 A 4
G-Force Acceleration
Data Data

Linear
Acceleration
Data

Homography
> Matrices <
Construction
A 4

Homography

HOInog:;raphy (Projective)

Matrices .
Transformation

v

Cartesian
PSFs

Algorithm 2:
Pixelization
Algorithm

Matrix
PSFs

Algorithm 1

The conversion of inertial
sensor data into Point
Spread Functions.

A 4

Wiener-Hunt
Deconvolution [«

Algorithm

A 4

Deblurred
Image

Stop

Figure 6. A diagram showing the basic outline of the proposed software pipeline.

28

6¢

—AxAy, Ax <0and Ay > 0,
0, otherwise;

x
—Az(1—1|Ay|), =<0,

o |y — |...

0, otherwise;

z
—Az (—Ay), Az <0and Ay <0,
0, otherwise;

{ Ay (1 —|Az]), Ay >0, { AxAy, Az > 0and Ay > 0,

0, otherwise; 0, otherwise;
- - Azx (1 —|Ayl), > 0,
7T (h’y’zf)l z(1—1[Ay]),
0, otherwise;

0, otherwise;

—Ay (1 —[Az[), Ay <0,
0, otherwise;

{ Az (—=Ay), Az >0and Ay <0,

(39)

where Az = z — (|z] +0.5) and Ay = y — (|y] + 0.5). With a slight abuse of notation, the function ® (7) with 7 = [z,y, 2] is defined in

terms of itself to mean that the expression 1 — 1 7® ([x, Y, z]T> I denotes 1 subtracted by the sum of all the other elements within the matrix.

Note that the | o] operator denotes an operator that takes the integer part of a floating point number.

NxM

Figure 7 below illustrates how Algorithm 2 works:

0.222... 0.111...

0.444... 0.222...

Figure 7. A visualization of how Algorithm 2 works.

It can be seen that the coordinate in the Cartesian-represented PSF, located northeast of
its “origin” (left), projects its psuedo-pixel that encroaches into its neighboring grids (i.e.,
north, northeast, and south). In the resulting matrix representation of the PSF (right), the

psuedo-pixel is distributed as discrete values in each entry of the matrix.

3.3.3 Non-Blind Deconvolution

The unsupervised Wiener-Hunt non-blind deconvolution algorithm takes in two inputs: the
degraded image and an estimated of the PSF that caused the image degradation. The out-
put of the algorithm is the restored image. The quality of the deblurring is dependent on
the accuracy of the provided PSF, i.e., how structurally similar it is to the true PSF. The
scikit-image library in Python provides an easy-to-use functional interface to this algo-
rithm, skimage.restoration.unsupervised_wiener().

Since the model of the motion blur is spatially-variant, each part of the degraded image
should be deconvolved with PSFs that are specific for that part. In addition to that, as will
be discussed later on, the Wiener-Hunt deconvolution algorithm, through testing, has the
tendency to give better deconvolution results when the image is relatively larger inits H x W
size relative to the PSF it is deconvolved against. Therefore, to maximize the deconvolution
result, the pipeline deconvolves the image as many times as there are the number of PSFs
and subsequently join the parts of the image that are deconvolved against the their correct

offending PSFs.

30

3.4 Testing Scenario

To measure the difference in the Wiener-Hunt deblurring quality between the true and noisy
PSFs modeled by this pipeline, the mean structural similarity (see Chapter 2.2.7) of (1) the
image deblurred using the true PSF and (2) the image deblurred using the noisy PSF is
computed. The mean and variance of each patch of the images are spatially-weighted using
a normalized Gaussian kernel with o = 0.2.

Additionally, to measure the accuracy of the PSF models themselves, this research pro-
vides “real” PSF samples obtained from deliberately motion-blurred images of small, bright
white points on a pitch-black background. The “real” PSF samples are obtained using a
camera that does not have any form of hardware image stabilization.

The qualitative features of the deblurred images are also explored. One point of interest
regarding the quality of the deblurred images is how much deconvolution artifacts are present

in the images after going through the deconvolution process and how complex are they are.

31

CHAPTER IV
RESULTS AND DISCUSSION

4.1 Methodology Implementation
4.1.1 Inertial Sensor Data Collection

The inertial sensor data for this research was collected through the embedded sensors in an
Apple iPhone 13, namely its gyroscope, accelerometer, and g-force sensor. The reason for
the inclusion of the g-force sensor data is so that gravitational acceleration can be subtracted
from the accelerometer data to obtain linear acceleration (i.e., the actual acceleration of the

device as it moves in the z, y, and z direction).

Ensuring Twice-Differentiability All inertial sensor data that has been obtained needs
further processing to obtain the device’s rotational and translational displacement. To do so,
the discrete inertial sensor data needs to be interpolated (for continuity) and then integrated:
once for the gyroscope data to convert angular velocity to angular displacement, and twice
for the linear accelerometer data to obtain the amount of displacement.

According to [2], spline interpolation is a class of interpolation that ensures twice-
differentiability. In Python, spline interpolation can be utilized through scipy library’s

interpolate.UnivariateSpline class:

Listing 1. Using the scipy.interpolate.UnivariateSpline class

gyro_x_cont = scipy.interpolate.UnivariateSpline(t, gyro_x, s=0.002307)
gyro_y_cont = scipy.interpolate.UnivariateSpline(t, gyro_y, s=0.002307)

gyro_z_cont = scipy.interpolate.UnivariateSpline(t, gyro_z, s=0.002307)

accel_x_cont = scipy.interpolate.UnivariateSpline(t, accel_x, s=0.0782)
accel_y_cont = scipy.interpolate.UnivariateSpline(t, accel_y, s=0.0782)

accel_z_cont = scipy.interpolate.UnivariateSpline(t, accel_z, s=0.0782)

The use of spline interpolation in obtaining a continuous representation of the discrete inertial
sensor data also doubles as a noise filter. The s parameter in the UnivariateSpline class

constructor refers to a smoothing factor used to determine the number of knots used in the

32

interpolation [21]. Assigning O as the value of s will guarantee that the resulting continuous
curve passes through all data points. By successively increasing the value of s on (separately-
taken) noisy stationary inertial sensor data until a flat curve is obtained, one can effectively
interpolate through “genuine” data points only—ignoring noise. Through trial and error, it is
found that the sensor data provided by the iPhone 13 can be effectively filtered-out by setting
the smoothing factor to 0.002307 for the gyroscope spline and 0.0782 for the accelerometer
spline. (The accelerometer data has more noise compared to the gyroscope data, hence the

higher smoothing factor.)

Obtaining Displacement from Velocity and Acceleration The gyroscope provides data
on the angular velocity of the device in each of the x, y, and z axis. Taking the first-order
indefinite integral (antiderivative) of the of the angular velocity spline returns the spline
representing the angular displacement. Integrating UnivariateSpline objects can be con-

veniently done by calling its antiderivative () method:

Listing 2. Obtaining the first-order antiderivative of the gyroscope data

gyro_x_antiderivative = gyro_x_cont.antiderivative()
gyro_y_antiderivative = gyro_y_cont.antiderivative()

gyro_z_antiderivative = gyro_z_cont.antiderivative()

On the other hand, the accelerometer data needs to be integrated twice in order to achieve
translational displacement. The antiderivative () method can be called with an n param-
eter value of 2 in order to compute the second antiderivative of the UnivariateSpline

object:

Listing 3. Obtaining the second-order antiderivative of the accelerometer data

accel_x_antiderivative = accel_x_cont.antiderivative(n=2)
accel_y_antiderivative = accel_y_cont.antiderivative(n=2)

accel_z_antiderivative = accel_z_cont.antiderivative(n=2)

Figure 8 and 9 illustrates the first three seconds of the gyroscope and accelerometer data

splines, along with their first-order and second-order antiderivatives respectively.

33

Rotational Displacement (rad)

Angular Velocity (rad/s)

0.10 A

0.05 1

0.00 1

—0.05 1

—0.10 1

Univariate Spline Interpolation Fit for Gyroscope Data

—0.15 1

0.

0.

0.

0.

0.

0.

—0.l

Linear Acceleration (m/s?)

Displacement (m)

0.0 0.5 1.0 1.5 2.0 25 3.0
Time (s)

First-Order Antiderivative of the Gyroscope Spline

0125 A

0100 1

0075 4

0050 A

0025

0000 4

0025 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 8. Gyroscope data spline and its first-order antiderivative.

Univariate Spline Interpolation Fit for Linear Accelerometer Data

0.4 4

0.3 4

0.2 1

0.14

0.0 4

—0.1 1

—0.2 1

— 1z Axis

—0.3 =

Second-Order Antiderivative of the Linear Accelerometer Spline

0.06

0.04 1

0.02 1

0.00

—— =z Axis
— y Axis

z Axis

T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 9. Linear accelerometer data spline and its second-order antiderivative.

34

4.1.2 Applying Homography to Estimate Point Movement

Translation Vector Constructing the translation vector is straightforward once the trans-
lational displacement data is already obtained. The translation vector for a movement that
spans from t, (of the entire data points) to ¢ can be obtained directly from evaluating Jansiation (t)
at ¢, which is the function that was produced from integrating ajine,(t) twice.

The following listing is a function that extracts a translation vector given the three twice-

integrated linear acceleration splines (on z, y, and z)

Listing 4. Function to extract a translation vector given ¢ (relative from ¢)
def translation_vector(t, x_func, y_func, z_func):

return displacement(t, x_func, y_func, z_func)

where the displacement () function is defined as

Listing 5. Function to evaluate UnivariateSpline objects at ¢

def displacement(t, x_func, y_func, z_func):
assert isinstance(x_func, scipy.interpolate.UnivariateSpline) \
and isinstance(y_func, scipy.interpolate.UnivariateSpline) \
and isinstance(z_func, scipy.interpolate.UnivariateSpline), \
'"x_data”, “y_data’, and “z_data’ must all be “scipy.interpolate.UnivariateSpline” objects.'
result = numpy.array([x_func(t), y_func(t), z_func(t)])

return result

Rotation Matrix The rotation matrix, Aouion(t, @) is more complicated to construct. Eq.
26 detailed that the complete rotation matrix is a product of three matrices: the z, y, and 2
rotation matrices. The following function computes the final rotation matrix. It accepts x,
y, and z as either the individual values of the integrated gyroscope data at time ¢ if the t
parameter is not provided or the integrated splines themselves at all three axes if t is given a

value:

Listing 6. Function to construct the rotation matrix

def rotation_matrix(x, y, z, t=None):
if isinstance(x, scipy.interpolate.UnivariateSpline) \
and isinstance(y, scipy.interpolate.UnivariateSpline) \

and isinstance(z, scipy.interpolate.UnivariateSpline):

35

assert t is not None, \
'"t° cannot be empty if “x°, "y, and “z° are instances of “scipy.interpolate.UnivariateSpline”.'
x_eval, y_eval, z_eval = displacement(t, x, y, z)
else:
x_eval, y_eval, z_eval = x, y, Z
matrix_x = numpy.array ([[numpy.cos(x_eval), -numpy.sin(x_eval), 0],
[numpy.sin(x_eval), numpy.cos(x_eval), O],
[o, 0, 11D
matrix_y = numpy.array([[numpy.cos(y_eval), O, numpy.sin(y_eval)],
[o, 1, 0 1,

[-numpy.sin(y_eval), 0, numpy.cos(y_eval)]]l)

matrix_z = numpy.array([[1, O, 0 1,
[0, numpy.cos(z_eval), -numpy.sin(z_eval)],
[0, numpy.sin(z_eval), numpy.cos(z_eval) 1])
matrix = matrix_x @ matrix_y @ matrix_z

return matrix

Homography Matrix Eq. 25 detailed the construction of the homography matrix H. The
function below computes the homography matrix based on a parameterized focal length (in
millimeter), pixel size (in millimeter), distance between the image sensor and the object of

interest (in millimeter), and the height and width of the image (in pixels):

Listing 7. Function to combine the computed rotation matrix and translation vector to generate a homography

matrix

def homography(focal_length,
pixel_size: tuple,
distance,
image_shape: tuple,
gyro_x, gyro_y, gyro_z,
accel_x, accel_y, accel_z,
natural=numpy.array ([0, 0, 1]),
t=None) :
if distance <= focal_length:
R = rotation_matrix(gyro_x, gyro_y, gyro_z, t=t) \
- ((translation_vector(t, accel_x, accel_y, accel_z) \
if t != None else numpy.array([accel_x, accel_y, accel_z]) @ natural) \
/ (distance / pixel_size[0]))
else:

R = rotation_matrix(gyro_x, gyro_y, gyro_z, t=t)

36

IH':
e
]

focal_length / pixel_size[0]

= focal_length / pixel_size[1]

Im
<
|

c_x = image_shape[0] / 2

c_y = image_shape[1] / 2

K = numpy.array([[f_x, 0, c_x],
o, f_y, c_yl,
[o, o, 1 1D

H

K @ R @ numpy.linalg.inv(K)

return H

Adhering to Eq. 28, the function only considers using the translation vector information if

the distance is less than or equal to the focal length of the camera.

4.1.3 Generating Cartesian-Represented Point Spread Functions

The following listing is a class that represents an interval cut from the integrated angular

velocity spline and twice-integrated acceleration splines in all three axes:

Listing 8. An Interval helper class to represent an interval cut from the inertial sensor data

class Interval:
def __init__(self, start, end, resolution=1000):
assert start < end, '“start® must be less than “end”.'
self.start = start
self.end = end
self .num = math.ceil((end - start) * resolution)
def __str__(self):
return f'Interval({self.start}, {self.end})'
def __repr__(self):
return self.__str__()
def apply(self, *args, noise=None, upper_bound=None) :
for arg in args:
assert isinstance(arg, scipy.interpolate.UnivariateSpline), \
str(arg) + ' is not an instance of “scipy.interpolate.UnivariateSpline”.'
if noise is not None:
assert isinstance(noise, float) or isinstance(noise, int), \
'"noise” must be an instance of “float®™ or “int’.'
assert upper_bound is not None, \
' “upper_bound® must also be defined if "noise” is defined.'
t = listQ)

for £ in args:

37

rand = random.uniform(-noise, noise)
Check if index shifted by the random value will be valid
if (self.start + noise < 0) or (self.end + noise > upper_bound):
rand = -rand
t.append (numpy.linspace(self.start + rand, self.end + rand, num=self.num))
t.append (numpy.linspace(self.start, self.end, num=self.num))
else:
t = numpy.linspace(self.start, self.end, num=self.num)
evaluated = 1list()
for i in range(len(args)):
£f_0 = args[i] (self.start)
f_eval = args[i] (t) if noise is None else args[i] (t[i])
f_eval_normalized = [j - £_0 for j in f_evall]
evaluated.append(f_eval_normalized)

return t if noise is None else t[-1], *evaluated

The object on its own is a placeholder for the actual interval, which is cut from the splines
and returned when the apply () method is called. The method itself also accepts a noise
parameter that allows for inaccurate interval cutting, which later, will enable the simulation
of noisy PSF capturing. The actual returned value of the method is the values of each splines
between start and end with a sampling rate defined by the resolution parameter in the
object’s initialization.

The Interval class is used to conveniently define the interval from the splines to use

when generating the continuous PSF with the generate_psf () function below:

Listing 9. Function to generate the continuous PSF

def generate_psf(interval: Interval,
focal_length: float,
pixel_size: tuple,
distance: float,
image_shape: tuple,
gyro_x_func, gyro_y_func, gyro_z_func,
accel_x_func, accel_y_func, accel_z_func,
patches: tuple,
natural=numpy.array ([0, 0, 1]),
noise=None,
upper_bound=None) :

assert isinstance(interval, Interval), \

38

'Input “interval® is not an instance of the “Interval® object.'
t, gyro_x, gyro_y, gyro_z, accel_x, accel_y, accel_z
= interval.apply(gyro_x_func, gyro_y_func, gyro_z_func,
accel_x_func, accel_y_func, accel_z_func,
noise=noise, upper_bound=upper_bound)
patch_width = image_shape[0] / patches[0]
patch_height = image_shape[1] / patches[1]
centers = list()
for i in range(patches[0]):
for j in range(patches[1]):
center_x = (j + 0.5) * patch_width
center_y = (i + 0.5) * patch_height
centers.append (numpy.array([center_x, center_y]))

list()

e}
2]
H

]

for i in range(len(t)):

o
|

= homography (focal_length,
pixel_size,
distance,
image_shape,
gyro_x[i], gyro_yl[il, gyro_z[i],
accel_x[i], accel_y[i], accel_z[il])
Compute transformations for each points
psf.append(list())
for j in centers:
pst[i] .append(transform(H, j))
complete_psf = numpy.array([[numpy.append(y, t[i]) for y in x] \
for i, x in enumerate(psf)]).transpose((1, 0, 2))

return complete_psf

The return value of the generate_psf () function is a list of n x 3 matrix where each column
represents an axis (n is the number of samples of the splines value that was taken by the
Interval object). The z axis represents time, while z and y represents a coordinate in the
Cartesian plane at time z. This (z, y) coordinate denotes where a point in the original image
frame (that is, the coordinate at zy) have moved to at z,. This PSF is noted as continuous
because of the nature of coordinates in a Cartesian plane. (The 2 axis, however, is discrete
as it is the result of the Interval class’ sampling from the splines.)

The generate_psf () function also accepts a patches tuple of two that defines how the

target image is divided when its corresponding PSF is computed. The product of the two

39

numbers in the tuple determines the number of grids the image is divided into, with one PSF
computed for each grid. This allows for the computation of PSFs that are spatially-variant,
i.e., different for parts of the image. The accuracy of the spatial variance can be determined
freely through manipulating the number passed into the patches parameter.

The following is an example usage of the generate_psf () function, where the transla-
tional and rotational displacement data provided by the splines are taken from ¢, = 21 and

t, = 21.2 (0.2 seconds in total):

Listing 10. An example usage of the generate_psf () function
psf = generate_psf(Interval(21, 21.2),
26,
(0.0017, 0.0017),
30,
(4032, 3024),
gyro_x_antiderivative, gyro_y_antiderivative, gyro_z_antiderivative,
accel_x_antiderivative, accel_y_antiderivative, accel_z_antiderivative,
(4, 3)
The other parameters, namely the focal length, the pixel size, and the image shape are taken
from the iPhone 13’s specification. The grid size is set to 4 X 3 meaning that there is a total
of 12 PSFs generated.
Figure 10 and 11 illustrates the PSF that was computed for each of the twelve sections

within the image; in 3-dimensional space, where the z axis indicates time (s); and in 2-

dimensional space, where the z axis is hidden, showing only the movement in = and y.

40

—— PSF 1
21.20
21.15
21.10
21.05
21.00

500
260

—— PSF 5
21.20
21.15
21.10
21.05
21.00

—— PSF 9
21.20
21.15
21.10
21.05
21.00
800

2540

280
260

1520
1540

—— PSF6
21.20
21.15
21.10
21.05

21.00

—— PSF 10
21.20
21.15
21.10
21.05
21.00
800

3560 760

— PSF3
21.20
2115
21.10
21.05
21.00

— PSF7
21.20
21.15
21.10
21.05
21.00

780

760
540

—— PSF 4
21.20
21.15
21.10
21.05
21.00

280

3540 260

3560

— PSF8
21.20
21.15
21.10
21.05
21.00
800
780

1520

1540 60

—— PSF 12
21.20
21.15
21.10
21.05
21.00

Figure 10. Cartesian-Represented PSF plotted in 3-dimensional space, with z axis as time.

29 — PSF1 | 4 — PsF2 — PSF3 — PSF4
200 200 2004 290
=0 280 2804 280
=0 270 270 270
260 ;
6 260 2604 260
250 5
250 2504 250
500 520 540 1520 1540 2520 2540 2560 3540 3560
— PSF5 — PSF6 — PSFT — PSF8
200 200 790 790
280 280 7801 780
270 270 7704 70
260 260 7604 60
76
250 250 7504 '
750
4540 4560 4580 5540 5560 5550 500 520 510 1520 1540
800 800 800
— PSFO — PSF10 — PSF 11 — PSF12
790 700 7004 -
780 780 780 780
770 770 770 770
760 760 760 4 760
2520 2510 2360 3510 3560 1510 1560 1580 5510 5560 5580

41

Figure 11. Cartesian-Represented PSF plotted in 2-dimensional space, omitting the z.

4.1.4 Converting Cartesian-Represented Point Spread Functions into their Matrix

Representations
The listing below is the Python implementation of Algorithm 2 into the function pixelate ():

Listing 11. Python implementation of Algorithm 2

def pixelate(x, y, x_origin, y_origin):
x_disp = x - x_origin
y_disp = y - y_origin
encroached = dict()
if x_disp > 0 and y_disp > O:
encroached.update({'north': None, 'northeast': None, 'east': None})
elif x_disp > 0 and y_disp < O:
encroached.update({'east': None, 'southeast': None, 'south': None})
elif x_disp < 0 and y_disp < O:
encroached.update({'south': None, 'southwest': None, 'west': Nonel})
elif x_disp < 0 and y_disp > O:
encroached.update({'west': None, 'northwest': None, 'north': Nonel})
elif x_disp > O and y_disp == O:
encroached['east'] = None
elif x_disp < 0 and y_disp == O:
encroached['west'] = None
elif x_disp == 0 and y_disp > O:
encroached['north'] = None
elif x_disp == 0 and y_disp < O:
encroached['south'] = None
else:
pass
for pixel in encroached:
if pixel == 'west' or pixel == 'east':
encroached[pixel] = abs(x_disp) * (1 - abs(y_disp))
elif pixel == 'morth' or pixel == 'south':
encroached[pixel] = abs(y_disp) * (1 - abs(x_disp))
else:
encroached[pixel] = abs(x_disp) * abs(y_disp)
encroached['self'] = 1 - sum(encroached.values())

return encroached

The function above is meant to be applied to a coordinate in the Cartesian plane, where each

1 x 1 grid represents a single pixel. It returns a dictionary detailing how much value should

42

each pixel in the PSF’s discrete representation be given relative to the origin pixel.
The function below, pixelate_psf () applies the pixelize () function to a continuous

PSF generated by generate_psf ():

Listing 12. Function to apply Algorithm 2 to continuous PSFs

def pixelate_psf (psf):
Figure out the minimum and maximum values of x and y

x_min = min(psf[:, :1].flatten())

x_max = max(psf[:, :1].flatten())

y_min = min(psf[:, 1:2].flatten())

y_max = max(psf[:, 1:2].flatten())
Normalize all x and y values
x_all = psf[:, :1] - x_min
y_all = psf[:, 1:2] - y_min
x_bound_original = x_max - x_min
y_bound_original = y_max - y_min
Round up “x_bound_original® and “y_bound_original® and shift all x and y
values accordingly
x_bound = math.ceil(x_bound_original)
y_bound = math.ceil(y_bound_original)
x_all += 0.5 * (x_bound - x_bound_original)
y_all += 0.5 * (y_bound - y_bound_original)
If “x_bound™ and/or “y_bound” are even, make them odd and shift all x and
y values accordingly
if x_bound % 2 == O:
x_bound += 1
x_all += 0.5
if y_bound % 2 == O:
y_bound += 1
y_all += 0.5
Add a 1-padding on all sides (meaning 2-padding on x and 2-padding on y)
and shift all x and y values accordingly
X_bound += 2
x_all += 1
y_bound += 2
y_all += 1
Make the x and y axis equal and shift all x and y values
Since both "max_dimension” and "min_dimension” are odd, the difference will be even
dimension_difference = x_bound - y_bound

if dimension_difference > 0: # x is larger

43

y_bound += abs(dimension_difference)
y_all += 0.5 * abs(dimension_difference)
elif dimension_difference < 0: # y is larger
x_bound += abs(dimension_difference)
x_all += 0.5 * abs(dimension_difference)
Construct empty matrix
matrix = numpy.zeros((y_bound, x_bound))
Combine “x_all” and “y_all”
points = numpy.concatenate((x_all, y_all), axis=1)
for point in points:
X, y = point
x_origin, y_origin = find_origin(x, y)
area = pixelate(x, y, x_origin, y_origin)
origin_index_row = math.floor (y)
origin_index_col = math.floor (x)
Because of the difference in “numpy.ndarray” indexing and Cartesian
indexing, also factoring in the fact that the matrix will be flipped
later, north here becomes the pixel below while west remains west
for k in area:
if k == 'nmorth':
matrix[origin_index_row + 1, origin_index_col] += areal[k]
elif k == 'northeast':
matrix[origin_index_row + 1, origin_index_col + 1] += arealk]
elif k == 'east':
matrix[origin_index_row, origin_index_col + 1] += arealk]
elif == 'southeast':
matrix[origin_index_row - 1, origin_index_col + 1] += areal[k]
elif == 'south':
matrix[origin_index_row - 1, origin_index_col] += areal[k]
elif == 'southwest':
matrix[origin_index_row - 1, origin_index_col - 1] += arealk]
elif k == 'west':
matrix[origin_index_row, origin_index_col - 1] += areal[k]
elif k == 'northwest':
matrix[origin_index_row + 1, origin_index_col - 1] += arealk]
elif k == 'self':
matrix[origin_index_row, origin_index_col] += arealk]
flipped_matrix = numpy.flip(matrix, 0)
normalized_flipped_matrix = flipped_matrix / numpy.sum(flipped_matrix)

return normalized_flipped_matrix

44

Due to its design, the pixelate_psf () function, in creating the discrete PSF, will assign
higher values to pixels with more coordinates that falls in its Cartesian plane representa-
tion. When the capturing device’s image frame moves in 3-dimensional space, it does not
move with a constant velocity. Slower movement will result in a denser sampling from the
Interval object’s apply () method, which translates to brighter regions in the discrete PSF.

Additionally, in order to preserve brightness of the image the PSF is going to be con-
volved against, the pixelate_psf () function normalizes the PSF matrix values in a way
that causes them to sum into 1 (see Eq. 38).

Figure 12 shows the discrete version of the PSFs shown in Figure 10 and 11.

PSF 1 PSF 2 PSF 3 PSF 4

PSF 6 PSF 7 PSF 8

0 20 40

PSF 9 PSF 10

Figure 12. Discrete PSF plotted as an image, where black means zero values.

4.1.5 Realistic Modeling of Motion-Blurred Images

The discrete PSFs produced by pixelate_psf () is a model of how pixels within an image

is “spread” throughout the area around it as the image frame of the capturing device moves

45

(during the time the image sensor is exposed to light). Performing convolution on an arbitrary
image of a size for which the PSFs were designed for (through the image_shape tuple in the
parameter of the homograpy () function) will yield in a motion-blurred image that reflects
what an image captured by the moving device’s camera (assuming the capturing device’s
principal point is at the center of the image sensor) with a shutter speed roughly equal to
the size of the PSF sampling interval (Interval.apply()) would look like. The following
code listing shows the use of the cv2 library’s filter2D () function to convolve an image

against a kernel (PSF):

Listing 13. Convolving an RGB image against a PSF
image = cv2.imread('./original.png')
convolved_image = cv2.filter2D(image, -1, cv2.flip(psf_matrix, -1))
Because the filter2D () function performs correlation (otherwise known as filtering), i.e.—
convolution where the kernel is not mirrored against its anchor point—the kernel would have
to be flipped first by 180° counter-clockwise before passing it to the filter2D function.
However, as mentioned by Eq. 2, a realistic modeling of an image with a natural motion
blur involves an (often) Gaussian additive noise that is independent at every pixel of the
image. The following code snippet generates an /{ x W x 3 tensor of noise sampled from a

standard normal Gaussian distribution and adds it to the image tensor:

Listing 14. Adding additive Gaussian noise to the motion-blurred image

gaussian_additive = numpy.random.normal(0, 1, (convolved_image.shape[0],
convolved_image.shape[1],
convolved_image.shape[2]))

gaussian_additive = gaussian_additive.reshape(convolved_image.shapel[0],
convolved_image.shape[1],
convolved_image.shape[2])

gaussian_additive = numpy.rint(gaussian_additive)

noisy_convolved_image = convolved_image + gaussian_additive

noisy_convolved_image = numpy.clip(noisy_convolved_image, O, 255).astype(numpy.uint8)

The resulting degraded image will faithfully replicate the motion blur model provided in
Eq. 2. This can be seen from comparing the PSF models to “real” PSFs obtained through

photographing small, bright white points (with deliberate motion blur) against a pitch black-

46

background.

4.1.6 Removing Motion Blur from Images

With consumer grade inertial sensors, noise is an unavoidable factor that one has to consider
when modeling PSFs. With sampling short intervals from inertial sensors, issues such as drift
are negligible. During the fitting of the spline curve on the raw data points, the application
of smoothing factors also contributes to noise reduction. However, there is the possibility
of noise caused by sensor reading delay. (It is understandable for the motion sensors of
consumer-grade devices to have this property, since they are mainly used for purposes that
does not require pin-point precision, such as gaming controls.) Hence, with such inertial
sensors, to a certain degree, discrepancies exist between an image’s and estimated PSFs.
This, in turns, suggest that in a realistic situation, the PSF estimation fed to the non-blind
deconvolution algorithm alongside the degraded image has a degree noise caused by sensor
reading delay.

To model the noise caused by sensor reading delay, normally, a Gaussian probability
distribution would be used. However, in the case where the parameters that is required
to build the Gaussian probability density function (PDF) is not given, i.e., the mean (u)
and the standard deviation (o), a crude approach using a uniformly-distributed PDF can
be used instead. The uniform distribution’s two parameters (6; and 65) can be adjusted
manually in a way that does not cause the resulting noisy PSF to deviate too far from the
true PSF. (A Gaussian distribution with ¢ = 0 and a manually-adjusted o can also be used.
However, 1 = 0 will cause a large portion of the resulting noisy PSF to not deviate from
the true PSF at all.) The uniform distribution’s 6; and 6, parameters can be passed on to
the Interval.apply () method’s noise parameter described earlier in order to generate a
noisy PSF.

The code listing below shows how the unsupervised version of the Wiener-Hunt algo-

rithm would be applied to a motion-blurred image with a (likely noisy) PSF estimation:

Listing 15. Using the unsupervised version of the Wiener-Hunt deconvolution algorithm

deconvolved_image = numpy.zeros(noisy_convolved_image.shape)

47

for i in range(3):
deconvolved_imagel[:, :, il, _
= skimage.restoration.unsupervised_wiener(noisy_convolved_imagel[:, :, i] / 255,
psf_estimation)

deconvolved_image = numpy.clip(deconvolved_image, 0, 1)
This applies the non-blind deconvolution algorithm to all three color channels of the de-
graded image. (The input image is also normalized so that its individual pixel values lie in
the interval [0, 1] as required by the skimage.restoration module.)

Figure 13, 14, 15, and 16 shows the difference between deconvolving using true and

noisy PSFs.

Original Image PSF Convolved Image

0 20 40

Deconvolved Tmage Deconvolved (Zoomed-in)

Figure 13. Convolving an image and deconvolving it with its true PSF (example 1).

48

Original Image PSF Convolved Image

20 40

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

Figure 14. Convolving an image and deconvolving it with a noisy estimate PSF (example 1).

Original Image PSF Convolved Image

20 40 60

Deconvolved Image Deconvolved (Zoomed-in)

a— -

Figure 15. Convolving an image and deconvolving it with its true PSF (example 2).

49

Original Image PSF Convolved Image

0 25 50 5

Noisy Convolved Image Deconvolved Image Deconvolved (Zoomed-in)

N

Figure 16. Convolving an image and deconvolving it with a noisy estimate PSF (example 2).

4.2 Results
4.2.1 PSF Model Accuracy

The figures 17 and 18 shows the similarity between the model PSFs generated by Algorithm

1 and the “real” PSFs captured through a camera, as mentioned in Chapter 3.4:

55500 4 <~ <= -
55000
54500 4

Vs Pad -
54000 4
53500 A

' s [
53000 4
52500 4

/’ ’ c
52000 = T T T T

—1500 —1000 —500 0 500
xr
(a) PSF models. (b) “Real” PSFs.

Figure 17. Sample 1 illustrating the similarity between model PSFs and “real” PSFs.

50

55000

54500 1

54000 4

53500

53000 4

T T T T
—1000 —500 0 500
T

(a) PSF models. (b) “Real” PSFs.

Figure 18. Sample 2 illustrating the similarity between model PSFs and “real” PSFs.

Through the use of the SSIM metric detailed in Chapter 2.2.7, it is found that the average
model PSFs have an average similarity of 0.901 (a SSIM score of 1 would indicate a perfect
match while —1 means that the compared images does not share any kind similarity).

4.2.2 Deblurring Results with Increasingly Noisy PSF

The following figures, 19, 20, 21, 22, and 23 shows deconvolution results using noisy PSF

estimates that are increasingly dissimilar from the true PSF:

51

True PSF

Original Image Noisy Convolved Image Noisy PSF Estimate

0 20 40) 20 40

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.9067516495080681, PSF Structural Similarity: 0.9944581456576461, PSF Noise: 0.01

Figure 19. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.01 seconds.

Original Image True PSF Noisy Convolved Image Noisy PSF Estimate

0 20 40 0 20 40

Deconvolved Image

Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.8793671773408884, PSF Structural Similarity: 0.9849339881879172, PSF Noise: 0.025

Figure 20. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at

0.025 seconds.

52

True PSF

Original Image Noisy Convolved Image

Noisy PSF Estimate

0 20 40 0 10 20 30

Deconvolved Image Deconvolved (Zoomed-in) Noisy Deconvolved Image Noisy Deconvolved (

Zoomed-in)

Image Structural Similarity: 0.830399988472709, PSF Structural Similarity: 0.8619838899216408, PSF Noise: 0.05

Figure 21. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at
0.05 seconds.

Original Image True PSF Noisy Convolved Image Noisy PSF Estimate

0 20 40 0 10 20 30

Deconvolved Image

Deconvolved (Zoomed-i Noisy Deconvolved Image Noisy Deconvolved (Zoomed-in)

Image Structural Similarity: 0.5438606211479362, PSF Structural Similarity: 0.8495355369654515, PSF Noise: 0.075

Figure 22. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at
0.075 seconds.

53

True PSF

Original Image Noisy Convolved Image Noisy PSF Estimate

0 20 40 0 20 40

Deconvolved Image Deconvolved (Zoomed-in)

Noisy Deconvolved Image Noisy Deconvolved

(Zoomed-in)

Image Structural Similarity: 0.706322773980524, PSF Structural Similarity: 0.8304805549475254, PSF Noise: 0.5

Figure 23. Difference in deconvolution results using a true PSF and a noisy PSF with a noise factor fixed at
0.5 seconds.

4.2.3 Deconvolution Results with Spatially-Variant PSFs

The figures 24, 25, and 26 shows the result of deconvolution when the image is degraded by
a set of PSFs that are spatially-variant:

Original Tmage Original Image, Zoomed-In

0 0
200 25
400 50
75
600
100
800
125
1000 150
1200 175
0 500 1000 1500 2000 0 50 100 150 200 250

Figure 24. The original image before a spatially-variant motion blur degradation.

Motion-Blurred Image, Zoomed-In

Motion-Blurred Image

0 0
»
200 25
5

400 50
75

600
100

800
125
1000 150
1200 175

0 500 1000 1500 2000 0 50 100 150 200 250

Figure 25. The spatially-variant motion-blurred image.

54

Deblurred Image, Zoomed-In

Deblurred Image

200
400
600 et s
800

1000

1200

1500 2000 0 50 100 150 200 250

Figure 26. The result of the spatially-variant deconvolution.

The PSF models for the image above was computed with a 3 x 4 (H x W) grid through
the information provided from motion sensors. The image itself was deconvolved twelve
(3 x 4 = 12) times, after which, the accurately-deblurred parts of each resulting images are
assembled to construct the final latent image.

It is also found that with an average PSF SSIM-based difference of 0.928 (between the
PSF used to simulate the motion blur and the PSF used in the deconvolution process), the

deblurred image and the original image produced an average SSIM score of (.881.

4.3 Discussion

The part of this research detailing the design and implementation of the pipeline responsible
for converting inertial sensor data into discrete PSFs provides a uniquely comprehensive
discussion on the topic, compared to other research in the deconvolution literature such as
(31, [6], [5], and [18].

In using the unsupervised Wiener-Hunt non-blind deconvolution algorithm, this research
finds that as the spatial similarity between the true PSF and the noisy PSF estimate (that is
used to deconvolve the image) shrinks, the spatial similarity between the images deconvolved
with the true PSF and the noisy PSF estimate also drops. In Figure 19, partly because of the
low noise introduced to the sampling interval, both the PSFs and the deconvolved images
exhibit very high similarity to their noisy counterparts. As the spatial similarity of the PSFs
get smaller, so do the spatial similarity of the deconvolved images. When a noise of 0.075
is introduced to the sampling interval, which causes the PSF spatial similarity to drop from

0.862 (when the noise was set to 0.05) to 0.849, the quality of the deblurring noticeably

55

degrades, dropping the deconvolved images’ spatial similarity to 0.544.

However, as noted by Figure 23, this trend is not always the case.

Additionally, this research finds that the quality of the deblurring is correlated to the ratio
of the degraded image size to the PSF size; as the PSF gets relatively smaller compared to
the degraded image that it is deconvolved against, the quality of deblurring improves. (This
is partly caused by the fact that larger PSFs mean more motion blur for the deconvolution
algorithm to attempt to reverse.) In this case, the improvement of the deblurring quality
mostly lies on the density of the image artifacts caused by the deconvolution. However, even
with dense image artifacts, the deblurring manages to yield almost all the details that was
highly latent in the motion-blurred image, especially when the PSF estimate that was passed
into the deconvolution algorithm does not deviate highly from the true PSF. As the estimated
PSF deviates from the true PSF, the deblurred image loses details that would otherwise be
present without the deviation.

Because of this property, the deconvolution part of the pipeline convolves the entire im-
age with every PSFs that were computed for it through the inertial sensor data. This is done to
maximize the size ratio between the PSF and the degraded image, which in turns, minimizes
the appearance of artifacts in the deblurring results.

Aside from the relative size difference between the degraded image and its corresponding
PSF, the deconvolution quality also depends on the complexity of the PSF, i.e., an image
motion-blurred by a linear PSF will deconvolve to a clearer image. The complexity of the
kernel affects the “shapes” taken by the deconvolution artifacts, so a more complex PSF also
tend to cause more complex patterns in the artifacts (which are harder to see image details

through).

56

CHAPTER V
CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This research highlights several critical factors influencing the quality of image deblurring
when using the unsupervised Wiener-Hunt non-blind deconvolution algorithm—with PSFs
estimated through the motion data—to—PSF pipeline detailed in the previous section. First,
the relationship between the spatial similarity of the true and (noisy) estimated PSFs and the
resulting deconvolved images is clear: as the spatial similarity between the PSF estimate and
the true PSF decreases, the quality of the deconvolution also deteriorates. This is particularly
evident when noise is introduced into the sampling interval, which causes both the PSFs and
the deconvolved images to lose fidelity as their spatial similarity declines. The findings
underscore the importance of accurate PSF estimation in non-blind deconvolution processes,
with even small deviations from the true PSF having the potential to significantly affect the
clarity and detail of the deconvolved images.

Additionally, this research shows that the relative size of the PSF to the degraded image
plays a pivotal role in determining the deconvolution quality. As the PSF becomes smaller
relative to the degraded image, the deconvolution process tends to yield clearer results, pri-
marily due to a reduction in the density of image artifacts that partly obscures fine details.
However, even in cases with high artifact density, the deblurring process can still recover
substantial latent image details, especially when the PSF estimate is relatively accurate. This
underscores the importance of both the size and the shape complexity of the PSF in achieving

high-quality deblurring.

5.2 Recommendations

Based on the findings of this research, it is recommended that future work on image de-
blurring focus on enhancing PSF estimation techniques in noisy environments. Researchers

should explore inertial sensor data denoising techniques that can estimate the probability

57

density function (PDF) of an inertial sensor’s reading delay. This method can replace the

uniform PDF approach that was used in this research to estimate the sensor reading delays.
Further research could also build on the end of the image deblurring pipeline provided

in this research. One possible avenue to explore is the retrieval of latent images from behind

the deconvolution artifacts produced by the Wiener-Hunt algorithm.

58

[1]

(2]

[8]

REFERENCES

A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for
smartphone cameras,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1692-1700.

S. Nayar and M. Ben-Ezra, “Motion-based motion deblurring,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 689-698, 2004.

J. Mustaniemi, J. Kannala, S. Sarkki, J. Matas, and J. Heikkila, “Gyroscope-aided mo-
tion deblurring with deep networks,” in 2019 IEEE Winter Conference on Applications

of Computer Vision (WACV), 2019, pp. 1914-1922.

“What is Camera Calibration?” https://www.mathworks.com/help/vision/ug/

camera-calibration.html, Accessed: 15 September 2024.

N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring using
inertial measurement sensors,” ACM Trans. Graph., vol. 29, no. 4, Jul 2010. [Online].

Available: https://doi1.org/10.1145/1778765.1778767

Z. Hu, L. Yuan, S. Lin, and M.-H. Yang, “Image deblurring using smartphone iner-
tial sensors,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 1855-1864.

O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and partially saturated im-
ages,” in 2011 IEEFE International Conference on Computer Vision Workshops (ICCV
Workshops), 2011, pp. 745-752.

A. Gopatoti, “Image denoising using spatial filters and image transforms: A review,’
International Journal for Research in Applied Science and Engineering Technology,
vol. 6, pp. 3447-3452, 2018. [Online]. Available: https://api.semanticscholar.org/
CorpusID:57598681

59

https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://doi.org/10.1145/1778765.1778767
https://api.semanticscholar.org/CorpusID:57598681
https://api.semanticscholar.org/CorpusID:57598681

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Goldstein and R. Fattal, “Blur-kernel estimation from spectral irregularities,” in
Computer Vision — ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and

C. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 622-635.

C.-M. Kao, P. L. Riviere, and X. Pan, “Chapter 6 - Basics of imaging theory
and statistics,” in Emission Tomography, M. N. Wernick and J. N. Aarsvold,
Eds. San Diego: Academic Press, 2004, pp. 103-126. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780127444826500090

S. W. Smith, “Chapter 17 - Custom filters,” in Digital Signal Processing,
S. W. Smith, Ed. Boston: Newnes, 2003, pp. 297-310. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780750674447500546

J. M. Blackledge, “Chapter 12 - image restoration and reconstruction,” in Digital
Image Processing, ser. Woodhead Publishing Series in Electronic and Optical
Materials, J. M. Blackledge, Ed. Woodhead Publishing, 2005, pp. 404—438. [Online].
Available: https://www.sciencedirect.com/science/article/pii/B9781898563495500124

——, “Chapter 2 - 2D Fourier theory,” in Digital Image Processing, ser.
Woodhead Publishing Series in Electronic and Optical Materials, J. M. Blackledge,
Ed. Woodhead Publishing, 2005, pp. 30-49. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/B9781898563495500021

M. F. Wahab and T. C. O’Haver, “Peak deconvolution with significant noise suppression
and stability using a facile numerical approach in Fourier space,” Chemometrics
and Intelligent Laboratory Systems, vol. 235, p. 104759, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0169743923000096

F. Orieux, J.-F. Giovannelli, and T. Rodet, “Bayesian estimation of regularization
and point spread function parameters for Wiener—Hunt deconvolution,” Journal of the
Optical Society of America A, vol. 27, no. 7, p. 1593, Jun 2010. [Online]. Available:
http://dx.doi.org/10.1364/JOSAA.27.001593

60

https://www.sciencedirect.com/science/article/pii/B9780127444826500090
https://www.sciencedirect.com/science/article/pii/B9780750674447500546
https://www.sciencedirect.com/science/article/pii/B9781898563495500124
https://www.sciencedirect.com/science/article/pii/B9781898563495500021
https://www.sciencedirect.com/science/article/pii/B9781898563495500021
https://www.sciencedirect.com/science/article/pii/S0169743923000096
http://dx.doi.org/10.1364/JOSAA.27.001593

[16]

[17]

[18]

[19]

[20]

[21]

O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring for shaken
images,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2010, pp. 491-498.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.

Cambridge University Press, ISBN: 0521540518, 2004.

K. S. Singh, M. Diwakar, P. Singh, and D. Garg, “Inertial sensor aided motion blur
kernel estimation for cooled IR detector,” Optics and Lasers in Engineering, vol. 175,
p. 108014, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0143816623005420

S. Kim and M. Kim, “Rotation representations and their conversions,” IEEE Access,

vol. 11, pp. 6682-6699, 2023.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from er-
ror visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600-612, 2004.

“scipy.interpolate.UnivariateSpline,” https://docs.scipy.org/doc/scipy/
reference/generated/scipy.interpolate.UnivariateSpline.html, Accessed: 27 September

2024.

61

https://www.sciencedirect.com/science/article/pii/S0143816623005420
https://www.sciencedirect.com/science/article/pii/S0143816623005420
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html

	Approval Page
	Ratification Page
	Statement of Authenticity
	Statement of Approval for Publication of Scientific Work for Academic Purposes
	Table of Contents
	List of Figures
	Listing
	List of Abbreviations
	Preface
	Abstract
	Introduction
	Background
	Problem Formulation
	Research Objectives
	Research Benefits
	Scope and Limitations
	Writing Systematics

	Literature Review
	Previous Research
	Using Multiple Cameras
	Using Inertial Sensor Data and ConvNets
	Using Inertial Sensor Data for Non-Blind Deconvolution

	Theoretical Framework
	Convolution
	Deconvolution
	Camera Movement and Spatial Variance
	Inertial Sensors Data
	Homography
	Spline Interpolation
	Structural Similarity Index (SSIM) for Image Similarity Measurement

	Methodology
	Tools and Resources
	General Overview
	Implementation
	Processing Raw Inertial Sensor Data
	Generating Point Spread Functions
	Non-Blind Deconvolution

	Testing Scenario

	Results and Discussion
	Methodology Implementation
	Inertial Sensor Data Collection
	Applying Homography to Estimate Point Movement
	Generating Cartesian-Represented Point Spread Functions
	Converting Cartesian-Represented Point Spread Functions into their Matrix Representations
	Realistic Modeling of Motion-Blurred Images
	Removing Motion Blur from Images

	Results
	PSF Model Accuracy
	Deblurring Results with Increasingly Noisy PSF
	Deconvolution Results with Spatially-Variant PSFs

	Discussion

	Conclusion and Recommendations
	Conclusion
	Recommendations

	References

